tìm x:
\(x^2-4=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=x-7\)
Thay t vào phương trình ban đầu ta có:
\(\left(t+1\right)^4+\left(t-1\right)^4=16\)
\(\left(t^4+4t^3+6t^2+4t+1\right)-\left(t^4-4t^3+6t^2-4t+1\right)=16\)
\(8t^3+8t=16\)
\(t^3+t-2=0\)
\(t=1\)
=> \(x-7=1\)
=> x = 8
Vậy x = 8 là giá trị cần tìm
gọi x là số tự nhiên cần tìm ; theo bài ra thì ta có phương trình :
\(\dfrac{13+x}{18+x}=\dfrac{4}{5}\)
\(\Leftrightarrow5\left(13+x\right)=4\left(18+x\right)\)
\(\Leftrightarrow72-65=5x-4x\)
\(\Leftrightarrow x=7\)
Gọi số cần tìm là a
Có:
(13+a)/(18+a)=4/5
=>4(18+a)=5(13+a)
=>4a + 72 = 5a + 65
=> a = 72 - 65 = 7
Do DE song song BC
=> Theo định lý Talet, DA/DB = EA/EC
Mà DA/DB= EC/EA
=> EC=EA
=> E là trung điểm AC
=> DE là đường trung bình của tam giác ABC
=> D cũng là trung điểm AB
\(x^2+4x+8=x^2+2.2x+4+4=\left(x+2\right)^2+4\\ \left(x+2\right)^2\ge0\forall x\\ =>\left(x+2\right)^2+4>4\left(>0\right)\forall x\\ =>x^2+4x+8>0\left(\forall x\right)\)
\(Ta\) \(có:\) \(x^2+4x+8\)
\(=x^2+4x+4+4\)
\(=\left(x+2\right)^2+4\)
\(mà:\) \(\left(x+2\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+4>0\) \(hay\) \(x^2+4x+8>0\) với mọi x
P = (a + b + c)3 - 4(a3 + b3 + c3) - 12abc
= (a + b + c)3 - 4(a3 + b3 + c3 + 3abc)
= (a + b + c)3 - 8c3 - 4(a3 + b3 - c3 + 3abc)
= (a + b + c)3 - (2c)3 - 4(a3 + b3 - c3 + 3abc)
Có (a + b + c)3 - (2c)3
= (a + b - c)[(a + b + c)2 + (a + b + c).2c + 4c2]
= (a + b - c)(a2 + b2 + c2 + 2ab + 2bc + 2ca + 2ac + 2bc + 2c2 + 4c2)
= (a + b - c)(a2 + b2 + 7c2 + 4bc + 4ac + 2ba)
Lại có a3 + b3 - c3 + 3abc
= (a + b)3 - c3 - 3ab(a + b) + 3abc
= (a + b - c)[(a + b)2 + (a + b)c + c2 - 3ab]
= (a + b - c)(a2 + b2 + c2 + ac + bc - ab)
Khi đó P = (a + b - c)(a2 + b2 + 7c2 + 4bc + 4ac + 2ba) - 4(a + b - c)(a2 + b2 + c2 + ac + bc - ab)
= (a + b - c)(-3a2 - 3b2 + 3c2 + 6ba)
= 3(a + b - c)(- a2 - b2 + 2ab + c2)
= 3(a + b - c)[c2 - (a - b)2]
= 3(a + b - c)(a + c - b)(c - a + b)
Nếu P < 0 thì 3(a + b - c)(a + c - b)(c - a + b) < 0
<=> (a + b - c)(a + c - b)(c + b - a) < 0
=> Có ít nhất một hạng tử trái dấu với 2 hạng tử còn lại
Với a,b,c > 0
Giả sử \(\left\{{}\begin{matrix}a+b-c< 0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\) => a;b;c không là 3 cạnh tam giác
hoặc \(\left\{{}\begin{matrix}a+b-c>0\\b+c-a< 0\\a+c-b< 0\end{matrix}\right.\) cũng tương tự
Vậy a,b,c không là 3 cạnh tam giác
\(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)
\(\Leftrightarrow\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}-10=0\)
\(\Leftrightarrow(\dfrac{x-241}{17}-1)+(\dfrac{x-220}{19}-2)+(\dfrac{x-195}{21}-3)+(\dfrac{x-166}{23}-4)=0\)
\(\Leftrightarrow\dfrac{x-258}{17}+\dfrac{x-258}{19}+\dfrac{x-258}{21}+\dfrac{x-258}{23}=0\)
\(\Leftrightarrow\left(x-258\right)\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{23}\right)=0\)
\(Do\) \(\left(\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}+\dfrac{1}{23}\right)\ne0\) \(nên\) \(để\) \(gt=0\)
\(\Leftrightarrow x-258=0\)
\(\Leftrightarrow x=258\)
\(Vậy...\)
\(a.\) \(ax^2-a^2x-x+a\)
\(=\left(ax^2-a^2x\right)-\left(x-a\right)\)
\(=ax\left(x-a\right)-\left(x-a\right)\)
\(=\left(ax-1\right)\left(x-a\right)\)
\(b.\) \(18x^3-12x^2+2x\)
\(=2x\left(9x^2-6x+1\right)\)
\(=2x\left(3x-1\right)^2\)
\(c.\) \(x^3-5x^2-4x+20\)
\(=\left(x^3-5x^2\right)-\left(4x-20\right)\)
\(=x^2\left(x-5\right)-4\left(x-5\right)\)
\(=\left(x^2-4\right)\left(x-5\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x-5\right)\)
\(d.\) \(\left(x+7\right)\left(x+15\right)+15\)
\(=x^2+15x+7x+105+15\)
\(=x^2+22x+120\)
\(=\left(x+10\right)\left(x+12\right)\)
\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a^2bc}{ab+a^2bc+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a^2bc}{ab\left(1+ac+c\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{ac+1+c}{ac+c+1}\)
\(A=1\)
\(A=\dfrac{ab}{ab+a+1}+\dfrac{bc}{bc+b+1}+\dfrac{ca}{ca+c+1}\)
\(A=\dfrac{abc}{abc+ac+c}+\dfrac{bc}{bc+b+abc}+\dfrac{ca}{ca+c+1}\)
\(A=\dfrac{1}{1+ac+c}+\dfrac{c}{c+1+ac}+\dfrac{ca}{ca+c+1}\)
\(A=1\)
Thấy \(x=0\) không phải là nghiệm của pt : Chia hai vế cho \(x^2\) ta được :
\(\Leftrightarrow x^2+3x+4+\dfrac{3}{x}+\dfrac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+3\left(x+\dfrac{1}{x}\right)+4=0\)
\(Đặt\) : \(x+\dfrac{1}{x}\) \(=t\) , thay vào pt ta được :
\(\Leftrightarrow t^2-2+3t+4=0\)
\(\Leftrightarrow\left(t+1\right)\left(t+2\right)=0\)
\(TH1:\) \(\Leftrightarrow x+\dfrac{1}{x}+1=0\)
\(\dfrac{x^2+1+x}{x}=0\)
hình như sai thì phải á bạn
\(TH2:\) \(x+\dfrac{1}{x}+2=0\)
\(x^2+2x+1=0\)
\(\Rightarrow x=-1\)
\(Vậy...\)
mong các anh chị lớp trên xem hộ em bài này với ạ chứ em cũng mới chỉ có lớp 8 thôi ạ
`x^2 -4=0`
`x^2=0+4`
`x^2 = 4`
\(=>\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(x^2-4=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(vay...\)