cho tam giác ABC nội tiếp (O), các đường cao AD,BE,CF cắt nhau tại H đường thẳng EF cắt O tại M,N (CF nằm giữaM,E)
a)cmr cungAM = cungAN
b) cmr AM là tiếp tuyến của đường tròn ngoại tiếp tam giác MHD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm m, n để đa thức P ( x) là đa thức 0 với P (x) = ( 4m + 6n - 4) x + ( 3m - 2n - 4 )
Giải: P (x) là đa thức 0
<=> \(\hept{\begin{cases}4m+6n-4=0\\3m-2n-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}m=\frac{16}{13}\\n=-\frac{2}{13}\end{cases}}\)
Kết luận:...
ĐK: \(x\ge0\)
\(C=\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1-3}{\sqrt{x}+1}=1-\frac{3}{\sqrt{x}+1}\)
a) \(C>9\)
<=> \(1-\frac{3}{\sqrt{x}+1}>9\)
<=> \(\frac{3}{\sqrt{x}+1}< -8< 0\)vô lí
=> Không tồn tại x
b)
\(C< \frac{1}{2}\)
<=> \(1-\frac{3}{\sqrt{x}+1}< \frac{1}{2}\)
<=> \(\frac{3}{\sqrt{x}+1}>\frac{1}{2}\)
<=> \(\frac{\sqrt{x}+1}{3}< 2\)( vì \(\sqrt{x}+1>0\))
<=> \(\sqrt{x}< 5\)
<=> \(0\le x\le25\)( tm đk)
Vậy:...
c)
\(C=1-\frac{3}{\sqrt{x}+1}\)
Ta có: \(\sqrt{x}\ge0;\forall x\)
khi đó: \(\sqrt{x}+1\ge1\)=> \(\frac{3}{\sqrt{x}+1}\le3\)=> \(C\ge1-3=-2\)
"=" xảy ra <=> x = 0.
Vậy gtnnC = -2 tại x = 0
A O H K P B C
a) Xét \(\Delta\)ACP và \(\Delta\)PCB có:
^ACP = ^PCB ( ^C chung )
^APC = ^PBC ( cùng chắn cung BP )
=> \(\Delta\)ACP ~ \(\Delta\)PCB ( g-g)
=> \(\frac{CP}{CB}=\frac{AC}{CP}\Rightarrow CP^2=AC.BC\)
b) Ta có: CK; CP là các tiếp tuyến tại K; P
=> CO vuông góc KP
=> H thuộc CO
Ta có: PH // OK ( cùng vuông góc với CK )
KH // OP ( cùng vuông góc với CP )
=> KOPH là hình bình hành
=> PH = OK = r
a) \(ĐKXĐ:x\ge0;x\ne3\)
b) \(A=\left(\frac{x-2\sqrt{3x}+3}{x-3}\right)\left(\sqrt{4x}+\sqrt{12}\right)\)
\(\Leftrightarrow A=\left(\frac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)}\right)\left(2\sqrt{x}+2\sqrt{3}\right)\)
\(\Leftrightarrow A=\left(\frac{\sqrt{x}-\sqrt{3}}{\sqrt{x}+\sqrt{3}}\right).2\left(\sqrt{x}+\sqrt{3}\right)\)
\(\Leftrightarrow A=2\left(\sqrt{x}-\sqrt{3}\right)\)
\(\Leftrightarrow A=2\sqrt{x}-2\sqrt{3}\)
c) Thay \(x=4-2\sqrt{3}\)vào A, ta có :
\(A=2\sqrt{4-2\sqrt{3}}-2\sqrt{3}\)
\(\Leftrightarrow A=2\sqrt{\left(1-\sqrt{3}\right)^2}-2\sqrt{3}\)
\(\Leftrightarrow A=2\left(\sqrt{3}-1\right)-2\sqrt{3}\)
\(\Leftrightarrow A=2\sqrt{3}-2-2\sqrt{3}\)
\(\Leftrightarrow A=-2\)
Gọi x, y lần lượt là thời gian vòi 1 , vòi 2 chảy 1 mình đầy bể ( x, y >12, giờ )
=> 1 giờ vòi 1 chảy được \(\frac{1}{x}\)(bể )
1 giờ vòi 2 chảy được \(\frac{1}{y}\)(bể )
mà 1 giờ cả hai vòi chảy được \(\frac{1}{12}\)(bể )
=> Ta có phương trình: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\)(1)
Vì vòi 1 chảy trong 5 giờ rồi khóa lại và mở vòi 2 trong 15 giờ thì được 75% bể nên ta có:
\(5.\frac{1}{x}+15.\frac{1}{y}=\frac{75}{100}\)(2)
Từ (1); (2) giải hệ với ẩn \(\frac{1}{x};\frac{1}{y}\)ta có:
\(\hept{\begin{cases}\frac{1}{x}=\frac{1}{20}\\\frac{1}{y}=\frac{1}{30}\end{cases}}\)<=> x = 20; y = 30
Vậy vò 1 chảy 1 mình trong 20 giờ thì đầy bể; vòi hai chảy 1 mình trong 30 giờ thì đẩy bể.
\(pt\)\(\Leftrightarrow\)\(9 . ( x - 2 ) - ( x^2 - 4 )= 0\) ( bình phương vế lên )
\(\Leftrightarrow\)\(9. ( x - 2 ) - ( x + 2 )(x-2)=0\)
\(\Leftrightarrow\)\(( x - 2 )(7 - x )=0\)
\(\Leftrightarrow\)\(x - 2 = 0\) \(hoặc \) \(7 - x = 0\)
\(\Leftrightarrow\)\(x = 2 \) \(hoặc\) \(x= 7\)