K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

đúng 

k c b a h

VD:

Ví dụ: giả sử hai đường cao BK = CK

Ta có: 


\(S_{ABC}=\frac{1}{2}.BH.AC=\frac{1}{2}.CK.AB\)

\(\Rightarrow AC=AB\)

Vậy tam giác ABC cân tại A.

5 tháng 8 2019

Hệ phương trình trở thành:

\(\hept{\begin{cases}\left(x+y\right)\left(x^2+y^2\right)=5\left(1\right)\\\left(x+y\right)\left(x-y\right)^2=3\left(2\right)\end{cases}}\)

Ta có: x+y  khác 0; x-y khác 0

+) Với x =0  thay vào ta có hệ phương trình mới: \(\hept{\begin{cases}y.y^2=5\\y.y^2=3\end{cases}}\) loại

+) Với x khác 0, Đặt y=xt

Chia vế theo vế (1) cho (2), Ta có:

 \(\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{5}{3}\Leftrightarrow\frac{x^2+x^2t^2}{\left(x-xt\right)^2}=\frac{5}{3}\)

\(\Leftrightarrow\frac{1+t^2}{\left(1-t\right)^2}=\frac{5}{3}\)

\(\Leftrightarrow3\left(1+t^2\right)=5\left(1-t\right)^2\)

\(\Leftrightarrow2t^2-10t+2=0\Leftrightarrow\orbr{\begin{cases}t=\frac{5+\sqrt{21}}{2}\\t=\frac{5-\sqrt{21}}{2}\end{cases}}\)

Ta có: y=xt thế vào phương trình (1) hoặc (2) ta có phương trình ẩn x. Gợi ý như vậy em làm tiếp nhé! :)

4 tháng 8 2019

Trừ vế theo vế hai phương trình trên ta có phương trình:

\(y^2-x^2=x^3-y^3-4x^2+4y^2+3x-3y\)

\(\Leftrightarrow\left(x^3-y^3\right)-3\left(x^2-y^2\right)+\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3x-3y+3\right)=0\)(1)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2-3x-3y+3=0\end{cases}}\)

+)Với  \(x-y=0\Leftrightarrow x=y\)

Thế vào 1 trong 2 phương trình  ba đầu:

Ta có: \(x^2=x^3-4x^2+3x\Leftrightarrow x^3-5x^2+3x=0\Leftrightarrow x\left(x^2-5x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5+\sqrt{13}}{2}hoacx=\frac{5-\sqrt{13}}{2}\end{cases}}\)

=> y tự làm nhé 

+) Với \(x^2+xy+y^2-3x-3y+3=0\)

Ta có: \(x^2+xy+y^2-3x-3y+3=\left(x^2+2.x.\frac{y}{2}+\frac{y^2}{4}\right)-3\left(x+\frac{y}{2}\right)+\frac{3y^2}{4}-\frac{3y}{2}+3\)

\(=\left(x+\frac{y}{2}\right)^2-2.\left(x+\frac{y}{2}\right).\frac{3}{2}+\frac{9}{4}+3\left(\frac{y^2}{4}-2.\frac{y}{2}.\frac{1}{2}+\frac{1}{4}\right)-\frac{9}{4}-\frac{3}{4}+3\)

\(=\left(x+\frac{y}{2}-\frac{3}{2}\right)^2+3\left(\frac{y}{2}-\frac{1}{2}\right)^2\ge0\)

"=" xảy ra khi và chỉ khi : \(\hept{\begin{cases}x+\frac{y}{2}-\frac{3}{2}=0\\\frac{y}{2}-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)

Thế vào 1 trong hai phương trình ban đầu thấy ko thỏa mãn : 1^2=1^3-4.1^2+3.1 vô lí

Kết luận nghiệm:...