Tìm x :
\(a,x^2\left(x-3\right)+12-4x=0\)
\(b,2\left(x+5\right)-x^2-5x=0\)
\(c,2x\left(x+2019\right)-x-2019=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Vì AH\(\perp\)DC
BK\(\perp\)DC
=> AH//BK
Mà BAH + AHK = 180° ( trong cùng phía)
=> BAH = 90°
Mà ABK + BKH = 180° ( trong cùng phía)
=> ABK = 90°
Mà BAH = AHK = 90°
Mà 2 góc này ở vị trí trong cùng phía
=> AB//HK
=> ABKH là hình thang cân
=> ABKH là hình thang cân
=> AB = HK , AH = BK
b) Vì ABCD là hình thang cân
=> AD = BC
=> ADC = BCD
Xét ∆ vuông AHD và ∆ vuông BKC ta có :
AD = BC
ADC = BCD
=> ∆AHD = ∆BKC (ch-gn)
Mà DH = KC ( tương ứng)
c) Ta có :
DH + HK + KC = DC
Mà HK = AB
=> DH + AB + KC = DC
DH + KC = DC - AB
Mà DH = KC
=> DH = \(\frac{1}{2}\)( CD - AB )
\(\left[...\right]=\left[n+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\right)\right]=\left[n+1-\frac{1}{n+1}\right]=\left[n+\frac{n}{n+1}\right]\)
Do n dương nên \(\frac{n}{n+1}< 1\)\(\Rightarrow\)\(\left[n+\frac{n}{n+1}\right]=n\)
Ta có \(\frac{a}{b^3-1}=\frac{a}{\left(b-1\right)\left(b^2+b+1\right)}=-\frac{1}{b^2+b+1}\)(Vì \(a+b=1\))
Từ đó, với \(a+b=1\)ta biến đổi VT của đẳng thức cần chứng minh như sau:
\(VT=-\left(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}\right)=\frac{-\left(a^2+b^2+a+b+2\right)}{a^2b^2+a^2b+ab^2+ab+a^2+b^2+a+b+1}\)
\(=\frac{-\left[\left(a+b\right)^2-2ab+a+b+2\right]}{a^2b^2+ab\left(a+b+1\right)+\left(a+b\right)^2-2ab+a+b+1}=\frac{2\left(ab-2\right)}{a^2b^2+3}=VP\)
Vậy có ĐPCM.
a) \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)+b^2\left[\left(c-b\right)-\left(a-b\right)\right]+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(b-c\right)\left(a^2-b^2\right)-\left(a-b\right)\left(b^2-c^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(b+c\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b-b-c\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a-c\right)\)
c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\left(1\right)\)
Đặt \(x^2+8x+11=y\)Thay vào (1) ta được
\(\left(y-4\right)\left(y+4\right)+15\)
\(=y^2-16+15\)
\(=y^2-1\)
\(=\left(y-1\right)\left(y+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+11\right)\)
Goi I là trực tâm của thì I thuộc CH và . (1)
Điều kiện cần: Từ (1), kết hợp với suy ra
suy ra , mà do đó (2)
Từ (1) và (2) suy ra
Vậy, nếu thì
Điều kiện đủ: trên tia đối của tia MQ lấy điểm R sao cho thì BRCQ là hình bình hành, suy ra ,
kết hợp với suy ra (3)
Mặt khác, ta có nên . Kết hợp với (1) suy ra (4)
Từ (3) và (4) suy ra PRBI là hbh nên . Mà do ó suy ra CQIP là hbh, ta có
Vậy, nếu thì
Kết luận: khi và chỉ khi . => DPCM
A B C K L H M P Q J A B C H P Q K L M S T
+) Chứng minh HP = HQ \(\Rightarrow\) MP = MQ:
Gọi J là đối xứng của C qua H. Có ngay \(\Delta\)CQH = \(\Delta\)JPH (c.g.c) => JP // CQ vuông góc BH
Từ đó P là trực tâm của \(\Delta\)BJH. Đồng thời MH là đường trung bình trong \(\Delta\)BCJ (IH // BJ)
Do vậy MH vuông góc HP, mà H là trung điểm PQ nên HM là trung trực của PQ hay MP = MQ (*)
+) Chứng minh MP = MQ \(\Rightarrow\) HP = HQ:
Bổ đề: Xét tam giác ABC cân tại A có điểm M nằm trên BC. Khi đó:
MB.MC = AB2 - AM2 nếu M thuộc đoạn BC; MB.MC = AM2 - AB2 nếu M nằm ngoài đoạn BC.
Giải bài toán: Gọi S,T thứ tự là hình chiếu của B,C trên PQ. Dễ chứng minh \(\Delta\)SMT cân tại M
Mà P,Q thuộc ST; \(\Delta\)PMQ cân tại M nên \(\Delta\)MPS = \(\Delta\)MQT (c.g.c) => PS = QT (1)
Dễ có HP.PS = PB.PL; HQ.QT = QC.QK (2). Áp dụng Bổ đề ta có PB.PL = MB2 - MP2 = MC2 - MQ2 = QC.QK (3)
Từ (1),(2) và (3) suy ra HP = HQ (**)
+) Từ (*) và (**) suy ra ĐPCM.
a, x2(x - 3) + 12 - 4x = 0
<=> x2(x - 3) + 4(3 - x) = 0
<=> x2(x - 3) - 4(x - 3) = 0
<=> (x - 3)(x2 - 4) = 0
<=> x - 3 = 0 hoặc x2 - 4 = 0
<=> x = 3 x2 = 4
<=> x = 3 x = 2 hoặc x = -2
b, 2(x + 5) - x2 - 5x = 0
<=> 2(x + 5) - x(x + 5) = 0
<=> (x + 5)(2 - x) = 0
<=> x + 5 = 0 hoặc 2 - x = 0
<=> x = -5 x = 2
c, 2x(x + 2019) - x - 2019 = 0
<=> 2x(x + 2019) - (x + 2019) = 0
<=> (x + 2019)(2x - 1) = 0
<=> x + 2019 = 0 hoặc 2x - 1 = 0
<=> x = -2019 2x = 1
<=> x = -2019 x = 1/2