K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2020

\(Giải\)

        \(A=\frac{20^{10}+1}{20^{10}-1}=1\frac{2}{20^{10}-1}\left(1\right)\)

       \(B=\frac{20^{10}-1}{20^{10}-3}=1\frac{2}{20^{10}-3}\left(2\right)\)

  \(Vì\)\(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\left(3\right)\)

Nên từ (1), (2) và (3) => A<B

DD
3 tháng 11 2020

x G K H y z

Kẻ \(Kz\)song song với \(Gx\)(như hình vẽ). 

Khi đó \(\widehat{xGK}=\widehat{GKz}\)(1) (hai góc so le trong) 

\(\widehat{GKH}=\widehat{GKz}+\widehat{zKH}\)(2)

mà theo giả thiết: \(\widehat{GKH}=\widehat{xGK}+\widehat{KHy}\)(3)

Từ (1), (2), (3) suy ra: \(\widehat{zKH}=\widehat{KHy}\)mà hai góc này ở vị trí so le trong suy ra \(Kz\)song song với \(Hy\).

Suy ra \(Gx\)song song với \(Hy\)(đpcm).

1 tháng 11 2020

0.944-(2. -1.162)= 3.268

(2.-0.5 -1)3= 8

Vì: -8 = -2^3

2.-0.5 -1= -2

1 tháng 11 2020

TH1: Nếu \(a+b+c=0\) ( \(a,b,c\ne0\))

\(\Rightarrow a+b=-c\)\(b+c=-a\)\(c+a=-b\)

\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)

TH2: Nếu \(a+b+c\ne0\)\(a,b,c\ne0\))

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)

\(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}\)

\(=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow a+b-c=c\)\(\Rightarrow a+b=2c\)

\(a-b+c=b\)\(\Rightarrow a+c=2b\)

\(-a+b+c=a\)\(\Rightarrow b+c=2a\)

\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)

Vậy \(M=-1\)hoặc \(M=8\)

1 tháng 11 2020

Với \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\) và ĐK : \(a,b,c\ne0\), ta có :

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{b-a+c}{a}\). Đặt \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{b-a+c}{a}=x\), mà \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{b-a+c}{a}=\frac{a+b-c+a-b+c+b-a+c}{c+b+a}\), có tiếp : \(=\frac{a-a+a+b-b+b+c-c+c}{c+b+a}=\frac{a+b+c}{c+b+a}=1\). Nhưng vì ĐK :\(=\frac{-a+b+c}{a}\), nên a + b - c = a - b + c = a - c + b = x ( coi x = a = b = c )

Tức là a,b,c = \(Stn\inℕ^∗\)

 \(M=\frac{2x2x2x}{abc}=\frac{x^38}{abc}=\frac{x512}{abc}\)

Biểu thức xảy ra khi a = b = c = x

31 tháng 10 2020

Áp dụng thủ thuật 1-2-3 và tính chất a + b = a . b , ta có :

1 + 1 = 1 . 1 ( loại ) , 2 + 2 = 2 . 2 ( giữ ) , 3 + 3 = 3 . 3 ( loại )

Vậy với \(a,b,c\ne0;\frac{ab}{a+b}=\frac{bc}{b+c}+\frac{ac}{a+c}\) , => Đẳng thức xảy ra khi x + y = x . y tức là a = b = c = 2 .

\(\left(1+\frac{a}{2b}\right)\left(1+\frac{b}{3c}\right)\left(1+\frac{c}{4a}\right)\)

\(\Rightarrow\left(1+\frac{1}{2\cdot1}\right)\left(1+\frac{1}{3\cdot1}\right)\left(1+\frac{1}{4\cdot1}\right)\)

\(=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\)

\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\)

\(=\frac{5}{2}\)( vì \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}=\frac{3\cdot4\cdot5}{2\cdot3\cdot4}=\frac{5}{2}\))

6 tháng 11 2020

Áp dụng hàng đơn vị , chia từng cặp , như vậy mỗi cặp có hàng đơn vị sẽ có dạng 1 + 2 + 3 + 4 + ..... + 10 = 55 và sẽ chia hết cho 5 .

Vậy M hoàn toàn chia hết cho 5 .

Tưởng ghi kiểu 2^1 + 2^2 + 2^3 + ... + 2^20 chứ ai dè ra đề bài dễ quá ta XD

30 tháng 10 2020

| 3 - x | + | 4 - x | + 20

= | 3 - x | + | x - 4 | + 20

Ta có : | 3 - x | + | x - 4 | ≥ | 3 - x + x - 4 | = |-1| = 1

=> | 3 - x | + | x - 4 | + 20 ≥ 1 + 20 = 21

Dấu "=" xảy ra <=> ( 3 - x )( x - 4 ) = 0

=> 3 ≤ x ≤ 4

Vậy GTNN của biểu thức = 21 <=> 3 ≤ x ≤ 4

30 tháng 10 2020

Đặt A = |3 - x| + |4 - x| + 20 = |x - 3| + |4 - x| + 20\(\ge\left|x-3+4-x\right|+20=\left|1\right|+20=21\)

Dấu "=" xảy ra <=> \(\left(x-3\right)\left(4-x\right)\ge0\)

Xét các trường hợp

TH1 : \(\hept{\begin{cases}x-3\ge0\\4-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge3\\x\le4\end{cases}\Rightarrow3\le x\le4}\)

TH2 : \(\hept{\begin{cases}x-3\le0\\4-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le3\\x\ge4\end{cases}}\left(\text{loại}\right)\)

Vậy Min A = 21 <=> \(3\le x\le4\)