Giải giúp mình nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{x-2}=\dfrac{-2}{x-4}\left(dk:x\ne2;x\ne4\right)\)
\(\Rightarrow3\cdot\left(x-4\right)=-2\cdot\left(x-2\right)\)
\(\Rightarrow3x-12=-2x+4\)
\(\Rightarrow3x+2x=4+12\)
\(\Rightarrow5x=16\)
\(\Rightarrow x=\dfrac{16}{5}\left(tm\right)\)
\(ĐK:x\ne2;x\ne4\\ Có:\dfrac{3}{x-2}=\dfrac{-2}{x-4}\\ \Leftrightarrow3\left(x-4\right)=-2\left(x-2\right)\\ \Leftrightarrow3x-12=-2x+4\\ \Leftrightarrow3x+2x=4+12\\ \Leftrightarrow5x=16\\ \Leftrightarrow x=\dfrac{16}{5}\left(TM\right)\\ Vậy:x=\dfrac{16}{5}\)
Ta có: \(x=\dfrac{y}{2}=\dfrac{z}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau và \(x+2y+3z=6\), ta được:
\(x=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{2y}{4}=\dfrac{3z}{9}=\dfrac{x+2y+3z}{1+4+9}=\dfrac{6}{14}=\dfrac{3}{7}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{7}\\y=\dfrac{3}{7}\cdot2=\dfrac{6}{7}\\z=\dfrac{3}{7}\cdot3=\dfrac{9}{7}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}\left|2y-27\right|^{2023}\ge0\forall y\\\left(3x+10\right)^{2024}\ge0\forall x\end{matrix}\right.\)
\(\Rightarrow\left|2y-27\right|^{2023}+\left(3x+10\right)^{2024}\ge0\forall x,y\)
Mà: \(\left|2y-27\right|^{2023}+\left(3x+10\right)^{2024}=0\)
nên: \(\left\{{}\begin{matrix}2y-27=0\\3x+10=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=\dfrac{27}{2}\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy: ...