có 280 quyển vở phát thưởng cho HSG. nhưng có 3 học sinh nghỉ nên số vở còn lại được chia đều cho mỗi bạn thêm 12 quyển nữa. Hỏi có bao nhiêu học sinh?
Mong mn giúp đỡ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B D C I J
a) Xét \(\Delta IAD\)và \(\Delta IBC\)có:
\(\widehat{AID}=\widehat{BIC}\)(2góc đối đỉnh)
\(\widehat{ADI}=\widehat{BCI}\)(cùng nhìn cung AB)
\(\Rightarrow\Delta IAD\)đồng dạng với \(\Delta IBC\)
\(\Rightarrow\frac{IA}{IB}=\frac{ID}{IC}\Rightarrow IA.IC=IB.ID\)(ĐPCM)
b)Xét \(\Delta JAC\)và \(\Delta JBD\)có:
\(\widehat{J}\)là góc chung
\(\widehat{JCA}=\widehat{JDB}\)
\(\Rightarrow\)\(\Delta JAC\)đồng dạng với\(\Delta JBD\)
\(\Rightarrow\frac{JA}{JB}=\frac{JC}{JD}\Rightarrow JA.JD=JB.JC\)(ĐPCM)
Phá tung ngoặc
\(A=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\)
\(=a^2+2+\frac{1}{a^2}+b^2+2+\frac{1}{b^2}\)
\(=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}+4\)
\(\ge a^2+b^2+\frac{4}{a^2+b^2}+4\)
Đặt \(x=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)
Làm nốt
Áp dụng bđt Bunhiacopski ta có
\(A=\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2=\frac{\left(a+\frac{1}{a}\right)^2}{1}+\frac{\left(b+\frac{1}{b}\right)^2}{1}\ge\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}\right)^2}{2}=\frac{\left(1+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\)
mà \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}=4\)
\(\Rightarrow A\ge\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)
Mới thi hk1 bài nãy _._
Gọi \(A',B'\)lần lượt là hình chiếu vuông góc của A, B lên MN, H là trung điểm của MN
\(\Rightarrow OH\perp MN\)
Xét hình thang \(AA'B'B\)có OH là đường trung bình nên:
\(OH=\frac{1}{2}\left(AA'+BB'\right)=\frac{R\sqrt{3}}{2}\)
\(MH=\sqrt{OM^2-OH^2}=\sqrt{R^2-\frac{3R^2}{4}}=\frac{R}{2}\)
\(\Rightarrow MN=2MH=R\)
do đó : \(S_{AKB}=\frac{1}{2}.AB.KP=R.KP\le\sqrt{3}R^2\)
Dấu "=" xảy ra <=> MN//AB hay \(\Delta AKB\)đều
b) bạn tự cm đc chứ ??? :))))
b,Tứ giác KMIN nội tiếp trong đường tròn đường kính KI, gọi Q là tâm đường tròn --> Q trung điểm KI ,
Vì MN = R , \(\Delta MNO\) đều
=> góc MAN = 30 độ
Trong tg vuông AKN có \(\widehat{MAN}\) = 300 => góc MKN = 60 độ -
=>góc MQN = 120 độ, vẽ QR vuông góc MN => R trung điểm MN => MR = R/2, trong tg MQR nửa đều
=> QR = MQ/2 và MR = R/2
=> MQ = \(R.\frac{\sqrt{3}}{3}\) --> Bán kính đường tròn = MQ =\(R.\frac{\sqrt{3}}{3}\)
Gọi số học sinh giỏi là x ( x > 3 , học sinh )
=> Mỗi học sinh sẽ có số quyển vở là: \(\frac{280}{x}\)( quyển )
Thực tế số học sinh được phát vở là: x - 3 ( học sinh )
=> Mỗi học sinh sẽ có số quyển vở là: \(\frac{280}{x-3}\)( quyển)
Theo bài ra ta có phương trình:
\(\frac{280}{x-3}=\frac{280}{x}+12\)
<=> \(280x=280\left(x-3\right)+12\left(x-3\right)x\)
<=> \(12x^2-36x-840=0\)
Giải delta
<=> x = -7 ( loại ) hoặc x = 10 ( tm)
Vậy số học sinh cần tìm là 10 học sinh.