Cho \(2\ge a\ge b\ge c\ge0\) và a + b + c = 3.
Chứng minh rằng \(a^2+b^2+c^2\le2a+b+3c\)
P/s: Đề này em chế từ Câu hỏi của Thảo Lê khi đang giải bài toán cũ nhưng giải ko ra nên chế cho nó ra bài mới:v
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tạm kí hiệu đồng dư là \(\exists\)
Với a2+b2+c2 chẵn hiển nhiên có điều phải chứng minh
Với a2+b2+c2 lẻ, xét 2 trường hợp
TH1: trong 3 số a,b,c có 1 số lẻ, 2 số chẵn giả sử số lẻ là a
Ta có a2\(\exists\)1(mod 8), do đó để a2+b2+c2\(\exists\)7(mod 8) thì b2+c2\(\exists\)(mod 8)
Vì b,c chẵn nên ta đặt b=2m,c=2n =>4(m2+n2)\(\exists\)6(mod 8)<=>4m2+4n2-6 chia hết cho 8
<=>2(2m2+2n2-3) chia hết cho 8<=>2m2+2n2-3 chia hết cho 4 (chỗ nãy không biết có đúng không) (1)
Ta thấy (1) không thể xảy ra do 2m2+2n2-3 là số lẻ
TH2:a,b,c là 3 số lẻ
Ta có ngay a2\(\exists\)1(mod 8),b2\(\exists\)1(mod 8),c2\(\exists\)1(mod 8)
=>a2+b2+c2\(\exists\)3 (mod 8)
Nói tóm lại a2+b2+c2 không thể đồng dư với 7 modulo 8
theo mk thì cần thêm đk nữa là a;b;c thuộc Z
a) = (x+3).(x-3)^2-(x-3)(x+3)^2
=(x^2-9)(x-3)-(x^2-9)(x+3)
=(x^2-9)(x-3-x-3)
=-6(x^2-9)
các câu còn lại tương tự
\(a,\left(x+3\right)\left(x^2-3x+9\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=x^3+3-\left(x^3-3\right)\)
\(=x^3+3-x^3+3\)
\(=6\)
\(b,\left(x-5\right)\left(x^2+5x+25\right)-\left(x+5\right)\left(x^2-5x+25\right)\)
\(=x^3-5^3-x^3-5^3\)
\(=-125-125\)
\(=-250\)
Gọi n số nguyên liên tiếp là k+1;k+2;k+3;...;k+nk+1;k+2;k+3;...;k+n
Ta cần chứng minh (k+1)(k+2)...(k+n)⋮n!(k+1)(k+2)...(k+n)⋮n!
Cách 1. Ta có (nk)∈Z,∀n,k∈Z(nk)∈Z,∀n,k∈Z
Mà (nk+n)=(n+k)!k!n!=(k+1)(k+2)...(k+n)n!∈Z(nk+n)=(n+k)!k!n!=(k+1)(k+2)...(k+n)n!∈Z nên ta có đpcm.
Cách 2. Ta có: vp(n!+k!)≥vp(n!)+vp(k!)=vp(n!.k!)vp(n!+k!)≥vp(n!)+vp(k!)=vp(n!.k!)
Do đó (n+k)!⋮n!k!(n+k)!⋮n!k!, suy ra đpcm.
Chứng minh công thức ở trên:
Do [a+b]≥[a]+[b][a+b]≥[a]+[b] nên vp(n!+k!)=+∞∑i=1[n!+k!pi]≥+∞∑i=1[n!pi]++∞∑i=1[k!pi]=vp(n!)+vp(k!)vp(n!+k!)=∑i=1+∞[n!+k!pi]≥∑i=1+∞[n!pi]+∑i=1+∞[k!pi]=vp(n!)+vp(k!)
P/s: 2 cách này là như nhau nhưng ở cách 2 không cần biết đến số tổ hợp chập k của n phần tử (nk)(nk) nhưng lại cần biết vp(n)vp(n).
h.
n3+ 3n2 -n - 3
= n( n2 -1) + 3( n2 - 1)
= ( n +3)( n2 - 1)
= ( n +3)( n -1)( n +1)
Do n là số nguyên lẻ. Đặt : 2k + 1 = n . Ta có :
( 2k+ 4)2k( 2k +2)
= 2( k + 2)2k . 2( k+ 1)
= 8k( k +1)( k +2)
Do : k ; k+1; k+2 là 3 STN liên tiếp
--> k( k +1).(k+ 2) chia hết cho 6
-->8k( k +1).(k+ 2) chia hết cho 48 với mọi n là số nguyên lẻ
Hệ số bất định thử xem sao nha ! Check luôn nha Nguyễn Tấn Phát ~
Nháp:
Ta nhẩm nghiệm được \(a=-3\) nên khi phân tích nó sẽ có nhân tử là \(x+3\)
Giả sử khi phân tích thành nhân tử nó sẽ có dạng:\(\left(x+3\right)\left(x^3+ax^2+bx+c\right)\)
\(=x^4+ax^3+bx^2+cx+3x^3+3ax^2+3bx+3c\)
\(=x^4+\left(a+3\right)x^3+\left(3a+b\right)x^2+\left(c+3b\right)x+3c\)
Mà \(\left(x+3\right)\left(x^3+ax^2+bx+c\right)=x^4+4x^3+5x^2+7x+3\)
Cân bằng hệ số ta được:
\(a=1;b=2;c=1\)
Khi đó \(x^4+4x^3+5x^2+7x+3=\left(x+3\right)\left(x^3+x^2+2x+1\right)\)
Bài làm
Ta có:
\(x^4+4x^3+5x^2+7x+3\)
\(=\left(x^4+x^3+2x^2+x\right)+\left(3x^3+3x^2+6x+3\right)\)
\(=x\left(x^3+x^2+2x+1\right)+3\left(x^3+x^2+2x+1\right)\)
\(=\left(x+3\right)\left(x^3+x^2+2x+1\right)\)
P/S:Mik nghĩ đến đây là hết rồi:3
Đặt \(a=\frac{x}{3};b=\frac{y}{3};c=\frac{z}{3}\)=> \(x+y+z=3\)
=> Cần Cm: \(x^2y+y^2z+z^2x\le4\)
Giả sử \(x\ge y\ge z\)
=> \(z\left(x-y\right)\left(y-z\right)\ge0\)
=> \(xyz+z^2y\ge y^2z+z^2x\)
Khi đó BĐT
<=> \(xyz+z^2y+x^2y\le4\)
<=> \(y\left(x^2+z^2+xz\right)\le4\)
<=>\(y.\left[\left(3-y\right)^2-xz\right]\le4\)
Do \(xz\ge0\)
=> \(y\left(3-y\right)^2\le4\)
<=> \(y^3-6y^2+9y-4\le0\)
<=> \(\left(y-4\right)\left(y-1\right)^2\le0\)luôn đúng do \(y< 3< 4\)
=> ĐPCM
Dấu bằng xảy ra khi \(x=2;y=1;z=0\)và các hoán vị
=> \(a=\frac{2}{3};b=\frac{1}{3};c=0\)và các hoán vị