cho 3 mệnh đề sau, với n là số tự nhiên
(1) n+ 8 là số chính phương
(2) chữ số tận cùng của n là 4
(3) n-1 là số chính phương
biết hai mệnh đề đúng và 1 mệnh đề sai. hãy xác định mệnh đề nào đúng nào sai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
mik 2k7 nhung co
bai j khong biet
ban se gui cho mik nhe!
mik lam cho
\(DK:x\ge4\)
\(\Leftrightarrow x=\sqrt{x-4}\left(1+\sqrt{1+x}\right)\)
\(\Leftrightarrow x=\sqrt{x-4}+\sqrt{x^2-3x-4}\)
\(\Leftrightarrow x^2=x^2-2x-8+2\sqrt{\left(x-4\right)\left(x^2-3x-4\right)}\)
\(\Leftrightarrow x+4=\sqrt{x^3-7x^2+8x+16}\)
\(\Leftrightarrow x^2+8x+16=x^3-7x^2+8x+16\)
\(\Leftrightarrow x^3-8x^2=0\)
\(\Leftrightarrow x^2\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=8\left(n\right)\end{cases}}\)
Vay PT co mot nghiem la \(x=8\)
Tính chất đặc trưng của tập hợp A là: Các số đểu cách nhau 2 đơn vị
Tính chất đặc trưng của tập hợp B là: Các số theo thứ tự từ bé đến lớn
Tính chất đặc trưng của tập hợp C là: Các số đểu cách nhau 2 thừa số
Tính chất đặc trưng của tập hợp D là: Các số đều cách nhau 4 đơn vị
ta thấy 1 số chính phương không bao giờ có đuôi là 2;3;7;8
Mà nếu mệnh đề (2) đúng thì n+8=...2 => mệnh đề (1) sai và n-1=...3 => mệnh đề (3) sai
Nhưng chỉ có 1 mệnh đề sai nên chỉ có mệnh đề (2) là thỏa mãn
Vậy n+8 và n+1 là số chính phương
\(\Rightarrow\left(n+8\right)-\left(n-1\right)=9\)
\(\Leftrightarrow\left(n+8\right)^2-\left(n-1\right)^2=9^2\)
\(\Leftrightarrow\left[\left(n+8\right)-\left(n-1\right)\right]\left[\left(n+8\right)+\left(n-1\right)\right]=9^2\)
\(\Leftrightarrow9\left(2n+7\right)=9^2\)
\(\Leftrightarrow2n-7=9\)
\(\Leftrightarrow n=8\)
Vậy n=8 thì mới thỏa mãn mệnh đề (1) và (3)