Cho [tex]f(x)=\sqrt[3]{\frac{x}{2}+\sqrt{\frac{x^2}{4}-1}} + \sqrt[3]{\frac{x}{2}-\sqrt{\frac{x^2}{4}-1}}[/tex] và [tex]g(x)=x^4-4x^2+2[/tex].
CMR: [tex]f(g(x))=g(f(x))[/tex].
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bàu này quá dễ cái này lớp 6 còn còn có trong chương trình :)
Cho hai tập khác rỗng : A = (m – 1; 4], B = (-2; 2m + 2), với m ∈ Rℝ. Giá trị m để A ∩ B ⊂ (-1; 3) là:
Điều kiện để tồn tại tập hợp A, B là
{m−1<4−2<2m+2⇔{m<5m>−2⇔−2<m<5A∩B⊂(−1;3)⇔{m−1≥−12m+2≤3⇔{m≥0m≤12⇔0≤m≤12m-1<4-2<2m+2⇔m<5m>-2⇔-2<m<5A∩B⊂(-1;3)⇔m-1≥-12m+2≤3⇔m≥0m≤12⇔0≤m≤12
Kết hợp với điều kiện (*) ta có 0 ≤ m ≤ 1/2 là giá trị cần tìm.
Cách này là tôi tự làm trong 1 lần ở Viet Jack kiểu tham khảo chứ ko coppy mạng :)
>3.....@Chi
Điều kiện để tồn tại tập hợp A, B là
\(\hept{\begin{cases}m-1>4\\-2< 2m+2\end{cases}}\Rightarrow\hept{\begin{cases}m< 5\\m>-2\end{cases}}\Leftrightarrow-2< m< 5\)
A ∩ B ⊂ (-1; 3) \(\Leftrightarrow\hept{\begin{cases}m-1\ge-1\\2m+2\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}m\ge0\\m\le\frac{1}{2}\end{cases}}\Leftrightarrow0\le m\le\frac{1}{2}\)
{m−1<4−2<2m+2⇔{m<5m>−2⇔−2<m<5A∩B⊂(−1;3)⇔{m−1≥−12m+2≤3⇔{m≥0m≤12⇔0≤m≤12m-1<4-2<2m+2⇔m<5m>-2⇔-2<m<5A∩B⊂(-1;3)⇔m-1≥-12m+2≤3⇔m≥0m≤12⇔0≤m≤12
Kết hợp với điều kiện (*) ta có 0 ≤ m ≤ 1/2 là giá trị cần tìm.