C= 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^4}\) + \(\dfrac{1}{2^6}\) + ... + \(\dfrac{1}{2^{98}}\) + \(\dfrac{1}{2^{100}}\)
Giúp mình nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{2}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=\dfrac{1}{2^x}\)
=>\(\dfrac{2}{2}\cdot\dfrac{3}{6}\cdot\dfrac{4}{8}\cdot...\cdot\dfrac{30}{60}\cdot\dfrac{31}{62}\cdot\dfrac{1}{64}=\dfrac{1}{2^x}\)
=>\(\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot...\cdot\dfrac{1}{2}\cdot\dfrac{1}{64}=\dfrac{1}{2^x}\)
=>\(\dfrac{1}{2^{29}}\cdot\dfrac{1}{2^6}=\dfrac{1}{2^x}\)
=>x=29+6=35
a: \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
\(=1-\dfrac{1}{6}=\dfrac{5}{6}\)
b: \(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{10100}\)
\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{100\cdot101}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
c: \(A=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}\)
d: \(A=\dfrac{3}{10}+\dfrac{3}{40}+...+\dfrac{3}{340}\)
\(=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{17\cdot20}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{17}-\dfrac{1}{20}\)
\(=\dfrac{1}{2}-\dfrac{1}{20}=\dfrac{9}{20}\)
Bài 10:
Số học sinh giỏi ngoại ngữ chiếm:
\(\dfrac{1}{3}:\dfrac{4}{5}=\dfrac{1}{3}\cdot\dfrac{5}{4}=\dfrac{5}{12}\)(tổng số học sinh)
Số học sinh giỏi Văn là:
\(1-\dfrac{1}{3}-\dfrac{5}{12}=\dfrac{12-4-5}{12}=\dfrac{3}{12}=\dfrac{1}{4}\)(tổng số học sinh)
Tổng số học sinh là: \(6:\dfrac{1}{4}=24\left(bạn\right)\)
Số học sinh giỏi toán là \(24\cdot\dfrac{1}{3}=8\left(bạn\right)\)
Số học sinh giỏi ngoại ngữ là 24-8-6=10(bạn)
Bài 11:
a: Để A là phân số thì \(x+2\ne0\)
=>\(x\ne-2\)
b: Để A là số nguyên thì \(2x-1⋮x+2\)
=>\(2x+4-5⋮x+2\)
=>\(-5⋮x+2\)
=>\(x+2\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{-1;-3;3;-7\right\}\)
Đặt x/9 = y/11 = k (khác 0)
=> x = 9k, y = 11k
=> x+ 6 = 9k + 11k = 20k = 60
=> k = 3
=> x = 27, y =33
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/9=y/11=x+y/9+11=60/20=3
x=3.9=27
y=3.11=33
vậy x=27, y=33
tổng mới tăng số đơn vị là :
25,4-10=15,4
Tổng mới là :
72,68+25,4=98,08
\(A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dots+\dfrac{2}{99\cdot101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dots+\dfrac{1}{99}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
\(\text{Δ}=4^2-4\cdot1\cdot m=-4m+16\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>-4m+16>0
=>-4m>-16
=>m<4
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-4\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)
\(x_1^2+x_2^2=6x_1x_2\)
=>\(\left(x_1+x_2\right)^2-8x_1x_2=0\)
=>\(\left(-4\right)^2-8m=0\)
=>16-8m=0
=>8m=16
=>m=2(nhận)
\(C=1+\dfrac{1}{2}+...+\dfrac{1}{2^{100}}\)
=>\(2C=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}\)
=>\(2C-C=2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{99}}-1-\dfrac{1}{2}-...-\dfrac{1}{2^{100}}\)
=>\(C=2-\dfrac{1}{2^{100}}=\dfrac{2^{101}-1}{2^{100}}\)
Cái này tính nhanh nhé!