Chương trình khuyến mại lớn nhất năm: Lì xì đầu xuân - Nhân đôi gói VIP, xem ngay!
Bộ GD&ĐT cấm dạy thêm: Giải pháp nào dành cho nhà trường và giáo viên?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bắc Giang)
Cho \(a,b,c\) là ba số dương. Chứng minh rằng
\(\frac{9a}{b+c}+\frac{25b}{c+a}+\frac{64c}{a+b}>30\).
Cho \(x,y,z\) là ba số dương thỏa mãn điều kiện \(xy+yz+zx=2016\). Chứng minh rằng
\(\sqrt{\frac{yz}{x^2+2016}}+\sqrt{\frac{zx}{y^2+2016}}+\sqrt{\frac{xy}{z^2+2016}}\le\frac{3}{2}\).
(Bình Định)
Cho \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{120}+\sqrt{121}}\)
và \(B=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{35}}\).
Chứng minh rằng \(B>A\).
Cho \(a,b,c\)là ba số dương thỏa mãn điều kiện \(a+b+c=3\). Chứng minh rằng
\(\frac{3+a^2}{b+c}+\frac{3+b^2}{c+a}+\frac{3+c^2}{a+b}\ge6\).
(Hải Phòng)
1) Cho \(a,b\)là hai số dương. Chứng minh rằng
\(3\left(b^2+2a^2\right)\ge\left(b+2a\right)^2\).
2) Cho \(a,b,c\)là ba số dương thỏa mãn điều kiện \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{1}{2}\). Chứng minh rằng
\(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\).
\(\frac{a^3+b^3}{2ab}+\frac{b^3+c^3}{2bc}+\frac{c^3+a^3}{2ca}\ge a+b+c\).
Tìm nghiệm nguyên của phương trình sử dụng điều kiện có nghiệm nguyên của phương trình bậc 2(a) x2+2y2+2xy+4x+9y+3=0x2+2y2+2xy+4x+9y+3=0(b) 2x4−2x2y+y2−64=0
(Hà Nam)
Cho \(x,y\) là hai số dương thỏa mãn điều kiện \(x+3y\le10\). Chứng minh rằng
\(\frac{1}{\sqrt{x}}+\frac{27}{\sqrt{3y}}\ge10\).
Khi nào xảy ra đẳng thức?
(Hòa Bình)
Cho \(a,b,c\) là ba số thỏa mãn các điều kiện \(0\le a,b,c\le2\) và \(a+b+c=3\). Chứng minh rằng \(a^2+b^2+c^2\le5\).
(Lạng Sơn)
Cho \(x,y\) là hai số dương thở mãn điều kiện \(2x+3y=5\). Chứng minh rằng \(\sqrt{xy+2x+2y+4}+\sqrt{\left(2x+2\right)y}\le5\).