Cho đường tròn (O;R) và dây BC cố định. A là điểm chuyển động trên cung lớn BC sao cho tam giác ABC nhọn. Gọi H là trực tâm của tam giác ABC, M là điểm đối xứng của H qua A. Chứng minh rằng khi A thay đổi thì điểm M chạy trên một đường cố định.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, \(P_1:Aa\left(đỏ\right)\times Aa\left(đỏ\right)\)
\(G:\frac{1}{2}A,\frac{1}{2}a\) \(\frac{1}{2}A,\frac{1}{2}a\)
\(F_1:\frac{1}{4}AA,\frac{2}{4}Aa,\frac{1}{4}aa\)Tỉ lệ phân li kiểu gen :\(\frac{1}{4}AA,\frac{2}{4}Aa,\frac{1}{4}aa\)
b, \(P_2:Aa\left(đỏ\right)\times aa\left(trắng\right)\)
\(G:\frac{1}{2}A,\frac{1}{2}a\) \(a\)
\(F_1:\frac{1}{2}Aa,\frac{1}{2}aa\)Tỉ lệ phân li kiểu gen:\(1:1\)

Với n= 3 , ,chọn x3 =y3 =1
Giả sử với n \(\ge\)3 , tồn tại cặp số nguyên dương lẻ ( xn ,yn ) sao cho 7.xn2 + y2n= 2n.Ta chứng minh mỗi cặp
\(\left(X=\frac{x_n+y_n}{2},Y=\frac{\left|7.x_n-y_n\right|}{2}\right)\),
\(\left(X=\frac{\left|x_n-y_n\right|}{2},Y=\frac{7.x_n\pm y_n}{2}\right)^2=2.\left(7.x_n^2+7_n^2\right)=2.2^n=2^{n+1}\)
Vì xn,yn lẻ nên xn = 2a+1 ; yn = 2k + 1 ( a,k \(\inℤ\))
\(\Rightarrow\frac{x_n+y_n}{2}=k+1+1\)và \(\frac{\left|x_n-y_n\right|}{2}=\left|k-1\right|.\)
Điều đó chứng tỏ rằng một trong các số \(\frac{x_n+y_n}{2}.\frac{\left|x_n+y_n\right|}{2}\)là lẻ .Vì vậy với n + 1 tồn tại các số tự nhiên lẻ xn+1 và yn+1 thỏa mãn 7.x2n+1 + y2n+1 =2n+1=> đpcm

1. friendliness (danh từ của friendly)
2. comfortable (tính từ của comfort)
3. sickness (danh từ của sick)
4. peaceful (tính từ của peace)
5. yourself - tạm dịch: "Bạn tự làm điều đó đi" - You should do it yourself)

Chia từ:
1. She runs without wearing shoes.
2. If I were you, I wouldn't tell him the truth.
3. Hoa wishes she could go with them.
4. What did you do yesterday?
5. She has studied English for 3 years.
1.wearing
2.were...wouldn't...
3.could
4.what did...do
5.has studied

Sửa lại đề Từ I kẻ đường thẳng song song AC cắt AB,BC lần lượt tại M,N
Vì MN//AC nên: \(\widehat{ACB}=\widehat{INB}\)(đồng vị)
Mà BIND là tứ giác nội tiếp nên: \(\widehat{ADB}=\widehat{INB}\)
Cho nên: \(\widehat{ACB}=\widehat{ADB}\)
Suy ra: ABDC là tứ giác nội tiếp
Đồng thời: \(\widehat{ADE}=\widehat{NBI}=\widehat{ABE}\Rightarrow\)ABDE là tứ giác nội tiếp
Vậy A,B,C,D,E cùng thuộc một đường tròn
Hơn nữa: tam giác ABC vuông tại A
Suy ra: BC là đường kính của đường tròn ngoại tiếp ngũ giác ABDCE
Vậy BE vuông góc CE
Hình vẽ:(Mình k chắc nó có hiện ra k nha )

\(\frac{1}{x-5}+\frac{1}{x-1}=\frac{1}{x}\) \(ĐKXĐ:x\ne5;x\ne1;x\ne0\)
\(\Leftrightarrow\frac{\left(x-1\right)x}{\left(x-5\right)\left(x-1\right)x}+\frac{\left(x-5\right)x}{\left(x-5\right)\left(x-1\right)x}=\frac{\left(x-5\right)\left(x-1\right)}{\left(x-5\right)\left(x-1\right)x}\)
=> ( x - 1)x + (x - 5)x = ( x - 5)(x - 1)
<=> x2 - x + x2 - 5x = x2 - x - 5x + 1
<=> x2 - x + x2 - 5x - x2 + x + 5x = 1
<=> x2 = 1
<=> x = 1
Vậy_

Hình nếu chị không vẽ được thì hỏi em nhé chị !
Gọi I là trung điểm của BC => I cố định ( vì B,C cố định )
Ta có : AG = 2.OI ( theo bổ đề 7 )
Lại có AM = AH nên AM = 2.OI ( 1 )
Trên tia IO lấy điểm K sao cho OK = 2. OI ( 2 )
=> K cố định ( vì O,I cố định )
Từ ( 1 ) ( 2 ) => AM = KO mà AM// KO
( vì cùng vuông góc với BC ) .
Do đó AMKO là hình bình hành nên KM = OA = R : không đổi
Vậy khi A thay đổi trên cung lớn BC thì điểm M đi động trên đường tròn cố định ( K ; R ) => đpcm