K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
28 tháng 5 2022

Câu 10: 

Gọi \(H\) là giao điểm của \(MO\) và \(AB\).

Xét tam giác \(MAO\) vuông tại \(A\) đường cao \(AH\)

\(\dfrac{1}{AH^2}=\dfrac{1}{MA^2}+\dfrac{1}{AO^2}\Leftrightarrow\dfrac{1}{\left(\dfrac{R\sqrt{2}}{2}\right)^2}=\dfrac{1}{MA^2}+\dfrac{1}{R^2}\Leftrightarrow MA=R\).

\(S_{MAOB}=S_{MAO}+S_{MBO}\)

\(=\dfrac{1}{2}.AO.MA+\dfrac{1}{2}.OB.MB\)

\(=\dfrac{1}{2}.R.R+\dfrac{1}{2}.R.R=R^2\)

Chọn C. 

Một thầy giáo dạy toán vì muốn kiểm tra kiến thức cũ với những học trò của mình, bèn lấy một trong số những viên gạch (hình hộp chữ nhật) từ một đống gạch ở công trình xây dựng gần đó và đã hỏi các học sinh của mình rằng: - Trong số các trò, trò nào có thể xác định được độ dài đường chéo của viên gạch này? Ngay lập tức, một cậu học trò tên Hùng nhanh nhảu...
Đọc tiếp

Một thầy giáo dạy toán vì muốn kiểm tra kiến thức cũ với những học trò của mình, bèn lấy một trong số những viên gạch (hình hộp chữ nhật) từ một đống gạch ở công trình xây dựng gần đó và đã hỏi các học sinh của mình rằng:

- Trong số các trò, trò nào có thể xác định được độ dài đường chéo của viên gạch này?

Ngay lập tức, một cậu học trò tên Hùng nhanh nhảu liền giơ tay xin thực hiện. Thầy giáo đưa cây thước kẻ cho cậu và cậu bắt đầu đo đạc các kích thước như chiều dài, chiều rộng, chiều cao của viên gạch. Trong đầu cậu vẫn còn lẩm nhẩm công thức tính đường chéo \(d=\sqrt{a^2+b^2+c^2}\) mà thầy mới dạy hôm qua. Do đó, cậu nhanh chóng nói ra kết quả. Thầy giáo khen cậu:

- Tốt! Tốt lắm! Trò Hùng đã nắm rất chắc kiến thức, biết vận dụng các kiến thức thầy đã dạy vào cuộc sống như vừa nãy. Giờ thầy sẽ thưởng cho Hùng điểm mười. Còn trò nào muốn thử sức nữa không?

Cả lớp vỗ tay hoan hô.

Đúng lúc này có một cậu học trò khác tên là Hưng, nhà nghèo, có bố làm thợ xây, rụt rè đứng dậy và xin thầy thực hiện thử thách này. Bình thường, cậu chỉ học ở mức trung bình, nên khi thấy cậu phát biểu thì thầy giáo lấy làm vui mừng. Thầy hồ hởi bảo:

- Chà, hôm nay bạn Hưng đã dũng cảm phát biểu, thật đáng tuyên dương! Nào, em hãy thực hiện thử thách này xem.

Hưng chậm rãi nhận lấy chiếc thước kẻ và tiến đến chỗ viên gạch. Bạn ấy không nhớ công thức, phải xoay sở tìm cách một lúc. Chợt cậu lại nhớ đến hình ảnh bố cậu xây nhà, và trong đầu cậu lóe lên một ý tưởng. Cậu chạy đến đống gạch, lấy thêm hai viên gạch nữa, cùng với viên gạch của thầy mà xếp thành hình chữ "L" rồi đo đường chéo của khoảng không gian trống tạo bởi ba viên gạch. Đến đây, thầy giáo bỗng hiểu ý của Hưng. Thầy thật không ngờ một học trò vốn bình thường chỉ là học sinh trung bình mà lại có thể nghĩ ra được một lời giải sáng tạo như vậy. Thầy khen:

- Trò Hưng của chúng ta đã có một lời giải thật chính xác và sáng tạo! Thật đáng khen. Cả lớp hãy thưởng cho bạn một tràng pháo tay nào!

Cả lớp vỗ tay cho Hưng bằng tất cả sự cảm phục. Hưng cảm ơn thầy và từ từ đi về lại chỗ ngồi của mình.

a) Văn bản trên sử dụng phương thức biểu đạt chính nào?

b) Xác định thành phần biệt lập trong câu sau và cho biết đây là thành phần gì: "Đúng lúc này có một cậu học trò khác tên là Hưng, nhà nghèo, có bố làm thợ xây, rụt rè đứng dậy và xin thầy thực hiện thử thách này."

c) Nêu bài học rút ra từ câu chuyện trên.

d) Viết đoạn văn ngắn (5-7 câu) nêu suy nghĩ của bản thân về tính sáng tạo.

3
28 tháng 5 2022

a. Tự sự phải không cô? em chả biết ngoài văn báo cáo !
b. " không biết"

c. toán là một môn học có gạch mục đích và sẽ  nhiều cách để giải đến kết quả như nước chảy từ cao xuống thấp, một quy luật  , nhưng môn văn là môn phóng đại từ thấp lên cao ..như đốt viên pháo hoa theo dự định lên cao 5 mét nhưng pháo hoa nổ lép khi tẹt ngòi ...
d. Thưa cô,  sức sáng tạo như là chuyển thể của eva và adam ạ ! và chính xác ho câu d này là " em cũng không biết"

28 tháng 5 2022

thui, cô mình không dám kết bạn ! sợ !!!

AH
Akai Haruma
Giáo viên
28 tháng 5 2022

Lời giải:
ĐKXĐ: $-10\leq x\leq 8$

$x^2+2x+7=(x+1)^2+6\geq 6(1)$

Áp dụng BĐT Bunhiacopxky:

$(\sqrt{8-x}+\sqrt{x+10})^2\leq (8-x+x+10)(1+1)=36$

$\Rightarrow \sqrt{8-x}+\sqrt{x+10}\leq 6(2)$

Từ $(1); (2)\Rightarrow \sqrt{8-x}+\sqrt{x+10}\leq 6\leq x^2+2x+7$

Để pt xảy ra thì $\sqrt{8-x}+\sqrt{x+10}=6=x^2+2x+7$

$\Leftrightarrow x=-1$

28 tháng 5 2022

ĐKXĐ : -10 \(\le x\le8\)

Ta có \(3\sqrt{8-x}+3\sqrt{10+x}\le\dfrac{3^2+8-x}{2}+\dfrac{3^2+10+x}{2}=18\)

 (BĐT Cauchy)

=> \(\sqrt{8-x}+\sqrt{10+x}\le6\)

=> VT \(\le6\) (1)

Lại có VP = x2 + 2x + 7 = (x + 1)2 + 6 \(\ge6\) (2)

Từ (1) (2) => Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3=\sqrt{8-x}\\3=\sqrt{10+x}\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\)

Vậy x = -1 là nghiệm phương trình 

AH
Akai Haruma
Giáo viên
28 tháng 5 2022

Lời giải:
a. 

$xy+x\sqrt{y}-\sqrt{y}-1=x\sqrt{y}(\sqrt{y}+1)-(\sqrt{y}+1)=(\sqrt{y}+1)(x\sqrt{y}-1)$
b.

$ab-a\sqrt{b}+b-\sqrt{b}=(ab+b)-(a\sqrt{b}+\sqrt{b})$

$=b(a+1)-\sqrt{b}(a+1)=(a+1)(b-\sqrt{b})=\sqrt{b}(\sqrt{b}-1)(a+1)$

27 tháng 5 2022

x=y+2

x2 = y2+4y +4

nhét vào bất đẳng thức ...

đúng là nó "đúng"

27 tháng 5 2022

ra (2y+1)2 lớn hơn bằng 0 đúng không ạ?