Cho tam giác ABC vuông tại A , AB = 12cm , AC = 16cm . Đường phân giác góc A cắt BC tại D .
a) TÍnh độ dài BC ,BD,CD
b) Kẻ đườg cao AH . Tính AH , HD và AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4x-9=-x+16\)
\(\Rightarrow4x+x=9+16\)
\(\Rightarrow5x=25\)
\(\Rightarrow x=5\)
Vậy \(x=5\)
4x - 9 = -x + 16
<=> 4x + x = 16 + 9
<=> 5x = 25
<=> x = 5
Vậy phương trình có một nghiệm x = 5
\(x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-4=0\\x-5=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=4\\x=5\end{cases}}\)
Vậy tập nghiện của PT là S = { 4 ; 5 }
x2 - 9x + 20 = 0
<=> x2 - 4x - 5x + 20 = 0
<=> x( x - 4 ) - 5( x - 4 ) = 0
<=> ( x - 4 )( x - 5 ) = 0
<=> x - 4 = 0 hoặc x - 5 = 0
<=> x = 4 hoặc x = 5
Vậy phương trình có tập nghiệm S = { 4 ; 5 }
a) Áp dụng định lý Pi-ta-go vào \(\Delta\)vuông ABC có :
\(AB^2+AC^2=BC^2\Leftrightarrow BC=20\left(cm\right)\)
Do AD là phân giác \(\widehat{A}\)theo tính chất đường phân giác , ta có :
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)
\(\Rightarrow\frac{BD}{BD+CD}=\frac{3}{3+4}\Rightarrow\frac{BD}{BC}=\frac{3}{7}\)
\(\Rightarrow BD=\frac{3}{7}BC=\frac{60}{7}\)
\(\Rightarrow DC=BC-BD=\frac{80}{7}\)
b) AH là đường cao \(\Delta\)vuông ABC nên :
\(S_{\Delta ABC}=\frac{AH.BC}{2}=\frac{AB.AC}{2}\)
\(\Rightarrow AH=\frac{AB.C}{BC}=\frac{48}{5}\left(cm\right)\)
Ta có :
\(BH^2=AB^2-AH^2\Rightarrow BH=\frac{36}{5}\left(cm\right)\)
\(\Rightarrow DH=BD=BH=\frac{48}{35}\left(cm\right)\)
\(AD^2=DH^2+AH^2\Rightarrow AD=\frac{48\sqrt{2}}{7}\left(cm\right)\)