Cho K= 1-5+5^2-5^3+5^4-5^5+...-5^99+5^100
a, Tính K
b, 5^101 chia 6 dư mấy
Mấy bạn có thể giúp mình làm đc bài này đc ko ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2\cdot6}+\dfrac{1}{3\cdot8}+...+\dfrac{1}{2023\cdot4048}\)
\(=\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{4046\cdot4048}\)
\(=\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{4046}-\dfrac{1}{4048}\)
\(=\dfrac{1}{4}-\dfrac{1}{4048}=\dfrac{1012-1}{4048}=\dfrac{1011}{4048}\)
\(A=\dfrac{1}{2\cdot6}+\dfrac{1}{3\cdot8}+\dfrac{1}{4\cdot10}+...+\dfrac{1}{2023\cdot4048}\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2023\cdot2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{1012-1}{2024}\)
\(=\dfrac{1011}{4048}\)
\(\left\{47-\left[736:\left(5-3\right)^4\right]\right\}.2021\)
\(=\left\{47-\left[736:2^4\right]\right\}.2021\)
\(=\left\{47-\left[736:16\right]\right\}.2021\)
\(=\left\{47-46\right\}.2021\)
\(=1.2021\)
\(=2021\)
\(\left\{47-\left[736:\left(5-3\right)^4\right]\right\}\cdot2021\)
\(=\left\{47-736:16\right\}\cdot2021\)
\(=\left(47-46\right)\cdot2021=2021\)
2(x-1)+3(x-2)=x-4
=> 2x-2+3x-6=x-4
=> 5x-8=x-4
=> 5x-x=8-4
=> 4x=4
=> x=4:4
=> x=1
Vậy: x=1
\(2\left(x-1\right)+3\left(x-2\right)=x-4\)
\(2x-2+3x-6=x-4\)
\(\left(2x+3x\right)-\left(2+6\right)=x-4\)
\(5x-8=x-4\)
\(5x-x=-4+8\)
\(4x=4\)
\(x=1\)
\(\left(7+x\right)-\left(21-13\right)=32\)
\(\left(7+x\right)-8=32\)
\(7+x=32+8\)
\(7+x=40\)
\(x=40-7\)
\(x=33\)
Vậy \(x=33\)
\(\left(7+x\right)-\left(21-13\right)=32\)
\(7+x-21+13=32\)
\(x+\left(7+13-21\right)=32\)
\(x-1=32\)
\(x=33\)
\(-11-\left(19-x\right)=50\)
\(-11-19+x=50\)
\(x-\left(11+19\right)=50\)
\(x-30=50\)
\(x=50+30\)
\(x=80\)
\(-11-\left(19-x\right)=50\Leftrightarrow19-x=-11-50=-61\Leftrightarrow x=19+61=80\)
= -1+ ( -1 ) + ( -1 ) + ( -1 ) + ( -1 )
= -2 + ( -3)
= - 5
chúc bạn học tốt
a\(\): \(K=1-5+5^2-5^3+...+5^{100}\)
=>\(5K=5-5^2+5^3-5^4+...+5^{101}\)
=>\(5K+K=5-5^2+5^3-5^4+...+5^{101}+1-5+5^2-5^3+...+5^{100}\)
=>\(6K=5^{101}+1\)
=>\(K=\dfrac{5^{101}+1}{6}\)
b: \(5^{101}\) chia 6 sẽ dư 5 bởi vì \(5^{101}+1⋮6\) và 1+5=6