K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2021

Ta có

   \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{2\left(x+2\right)^2}{x^6-1}\)   ( điều kiện x khác 1 ; -1 )

  \(\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{2\left(x+2\right)^2}{x^6-1}\)

     \(\frac{x^2-1}{x^3-1}-\frac{x^2-1}{x^3+1}=\frac{2\left(x+2\right)^2}{x^6-1}\)

     \(\frac{\left(x^2-1\right)\left(x^3+1-x^3+1\right)}{\left(x^3-1\right)\left(x^3+1\right)}=\frac{2\left(x+2\right)^2}{x^6-1}\)

   \(\frac{2\left(x^2-1\right)}{x^6-1}=\frac{2\left(x+2\right)^2}{x^6-1}\)

\(\left(x^2-1\right)\left(x^6-1\right)=\left(x+2\right)^2\left(x^6-1\right)\)

\(\left(x^6-1\right)\left(4x+5\right)=0\)

\(\orbr{\begin{cases}x^6=1\\x=-\frac{5}{4}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\pm1\left(loại\right)\\x=-\frac{5}{4}\left(chọn\right)\end{cases}}\)  

vậy x = -5/4

9 tháng 12 2021

x2−2(m+1)x+m2+2=0x2−2(m+1)x+m2+2=0

Để phương trình có hai nghiệm x1,x2x1,x2 thì Δ′≥0Δ′≥0

⇔(m+1)2−m2−2≥0⇔(m+1)2−m2−2≥0

⇔2m−1≥0⇔m≥12⇔2m−1≥0⇔m≥12

Theo Vi-et ta có: 

⇒{x1.x2=m2+2x1+x2=2(m+1)⇒P=m2+2−2.2(m+1)−6=m2−4m−8=(m−2)2−12(m−2)2≥0⇒P≥−12⇒{x1.x2=m2+2x1+x2=2(m+1)⇒P=m2+2−2.2(m+1)−6=m2−4m−8=(m−2)2−12(m−2)2≥0⇒P≥−12

Dấu "=" xảy ra ⇔m=2 (thỏa mãn).

Vậy m=2m=2 thì PP đạt giá trị nhỏ nhất là -12.

4 tháng 2 2021

mk bị điên à

hỏi ko hỏi

lại giở trò con bò

4 tháng 2 2021

này nhá

nhắc lại nhá ;ĐÂY LÀ CHỖ HỎI ĐÁP

KO PHẢI SÂN CHƠI CỦA CẬU

PT \(\Leftrightarrow\frac{\left(x+3\right)\left(x-2\right)}{\left(x-4\right)\left(x-2\right)}+\frac{\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-2\right)}=\frac{2}{-\left(x-4\right)\left(x-2\right)}\)

\(\Leftrightarrow\frac{-\left(x+3\right)\left(x-2\right)-\left(x-1\right)\left(x-4\right)}{-\left(x-4\right)\left(x-2\right)}=\frac{2}{-\left(x-4\right)\left(x-2\right)}\)

\(\Rightarrow-\left(x^2-2x+3x-6\right)-\left(x^2-4x-x+4\right)=2\)

\(\Leftrightarrow-x^2-x+6-x^2+5x-4=2\)

\(\Leftrightarrow-2x^2+4x=0\Leftrightarrow-2x\left(x-2\right)=0\Leftrightarrow x=0;x=2\)

Vậy nghiệm của phương trình là x = 0 ; x = 2 

3 tháng 2 2021

Ta có: \(2x^3-7x^2+7x-2=0\)

\(\Leftrightarrow\left(2x^3-2x^2\right)-\left(5x^2-5x\right)+\left(2x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2-5x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(2x^2-4x\right)-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(2x-1\right)=0\)

\(\Rightarrow x\in\left\{\frac{1}{2};1;2\right\}\)

3 tháng 2 2021

\(2x^3-7x^2+7x-2=0\)

\(\Leftrightarrow2\left(x^3-1\right)-7x\left(x-1\right)=0\)

\(\Leftrightarrow2\left(x-1\right)\left(x^2+x+1\right)-7x\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2+2x+2-7x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x^2-5x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=\frac{1}{2};x=2\)

Vậy tập nghiệm của phương trình là S = { 1 ; 1/2 ; 2 } 

3 tháng 2 2021

\(\left(x^2+x-2\right)\left(x^2+x-3\right)=12\)

Đặt \(x^2+x-2=t\)

\(\Leftrightarrow t\left(t-1\right)=12\)

\(\Leftrightarrow t^2-t-12=0\Leftrightarrow\left(t-4\right)\left(t-3\right)=0\Leftrightarrow t=4;t=3\)

hay \(x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow x=2;x=-3\)

\(x^2+x-5\ne0\)tự chứng minh 

Vậy tập nghiệm của phương trình là S = { -3 ; 2 } 

3 tháng 2 2021

Đặt \(a=x^2+x-2\)\(\Rightarrow\)\(a-1=x^2+x-3\)

Ta có: \(a.\left(a-1\right)=12\)

    \(\Leftrightarrow a^2-a-12=0\)

    \(\Leftrightarrow a^2-4a+3a-12=0\)

    \(\Leftrightarrow\left(a-4\right).\left(a+3\right)=0\)

    \(\Leftrightarrow\orbr{\begin{cases}a-4=0\\a+3=0\end{cases}}\)

    \(\Leftrightarrow\orbr{\begin{cases}a=4\\a=-3\end{cases}}\)

\(a=4\)\(\Rightarrow\)\(x^2+x-2=4\)

                   \(\Leftrightarrow\)\(x^2+x-6=0\)

                   \(\Leftrightarrow\)\(x^2-2x+3x-6=0\)

                   \(\Leftrightarrow\)\(\left(x-2\right).\left(x+3\right)=0\)

                   \(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

\(a=-3\)\(\Rightarrow\)\(x^2+x-2=-3\)

                   \(\Leftrightarrow\)\(x^2+x+1=0\)

                   \(\Leftrightarrow\)\(\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=0\)

                   \(\Leftrightarrow\)\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\)( * )

 Vì \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)\(\Rightarrow\)Đa thức ( * ) ko có giá trị

Vậy ............

3 tháng 2 2021

\(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

Đặt \(x^2+x+1=t\)

\(\Leftrightarrow t\left(t+1\right)=12\Leftrightarrow t^2+t-12=0\)

\(\Leftrightarrow\left(t-3\right)\left(t+4\right)=0\)

\(\Leftrightarrow\left(x^2+x-2\right)\left(x^2+x+5\ne0\right)=0\)( tự chứng minh )

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow x=1;x=-2\)

Vậy tập nghiệm phương trình là S = { 1 ; -2 }