Giá niêm yết (chưa bao gồm thuế) của một chiếc điện thoại là 77 990990 000000 đồng. Bác Minh mua chiếc điện thoại đó thì cần trả thêm VAT khi thanh toán, VAT được tính bằng 10%10% giá niêm yết.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(1-\dfrac{1}{2^2}\right)\cdot\left(1-\dfrac{1}{3^2}\right)\cdot\left(1-\dfrac{1}{4^2}\right)\cdot...\cdot\left(1-\dfrac{1}{2024^2}\right)\)
\(=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}\cdot\dfrac{4^2-1}{4^2}\cdot...\cdot\dfrac{2024^2-1}{2024^2}\)
Ta có CT: \(a^2-1=\left(a+1\right)\left(b+1\right)\)
\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot\dfrac{\left(4+1\right)\left(4-1\right)}{4^2}...\cdot\dfrac{\left(2024+1\right)\left(2024-1\right)}{2024^2}\)
\(=\dfrac{1\cdot3}{2^2}\cdot\dfrac{4\cdot2}{3^2}\cdot\dfrac{5\cdot3}{4^2}\cdot...\cdot\dfrac{2025\cdot2023}{2024^2}\)
\(=\dfrac{1\cdot2\cdot3^2\cdot...\cdot2023^2\cdot2024\cdot2025}{2^2\cdot3^2\cdot...\cdot2024^2}\)
\(=\dfrac{2025}{2\cdot2024}=\dfrac{2025}{4048}>\dfrac{2024}{4048}=\dfrac{1}{2}\)
Vậy: ...
Ta có :
\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right).....\left(1-\dfrac{1}{2024^2}\right)\)
\(=\dfrac{2^2-1}{2^2}.\dfrac{3^2-1}{3^2}.\dfrac{4^2-1}{4^2}.....\dfrac{2024^2-1}{2024^2}\)
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{2023.2025}{2024^2}\)
\(=\dfrac{1.2.3.....2023}{2.3.4.....2024}.\dfrac{3.4.5.....2025}{2.3.4.....2024}\)
\(=\dfrac{1}{2024}.\dfrac{2025}{2}=\dfrac{2025}{4048}>\dfrac{1}{2}\)
Vậy \(B>\dfrac{1}{2}\)
\(\dfrac{x-4}{2020}+\dfrac{x-3}{2021}+\dfrac{x-2}{2022}+\dfrac{x-1}{2023}+\dfrac{x-2024}{5}=4\) (sửa đề)
\(\Rightarrow\left(\dfrac{x-4}{2020}-1\right)+\left(\dfrac{x-3}{2021}-1\right)+\left(\dfrac{x-2}{2022}-1\right)+\left(\dfrac{x-1}{2023}-1\right)+\dfrac{x-2024}{5}=0\)
\(\Rightarrow\dfrac{x-2024}{2020}+\dfrac{x-2024}{2021}+\dfrac{x-2024}{2022}+\dfrac{x-2024}{2023}+\dfrac{x-2024}{5}=0\)
\(\Rightarrow\left(x-2024\right)\left(\dfrac{1}{2020}+\dfrac{1}{2021}+\dfrac{1}{2022}+\dfrac{1}{2023}+\dfrac{1}{5}\right)=0\)
\(\Rightarrow x-2024=0\) (vì \(\dfrac{1}{2020}+\dfrac{1}{2021}+\dfrac{1}{2022}+\dfrac{1}{2023}+\dfrac{1}{5}\ne0\))
\(\Rightarrow x=2024\)
\(\dfrac{x-4}{2020}-1+\dfrac{x-3}{2021}-1+\dfrac{x-2}{2022}-1+\dfrac{x-1}{2023}-1+\dfrac{x-2024}{5}+2=0\)
\(\Leftrightarrow\dfrac{x-2024}{2020}+\dfrac{x-2024}{2021}+\dfrac{x-2024}{2022}+\dfrac{x-2024}{2023}+\dfrac{x-2024}{5}+2=0\)
\(\Leftrightarrow\left(x-2024\right)\left(\dfrac{1}{2020}+\dfrac{1}{2021}+\dfrac{1}{2022}+\dfrac{1}{2023}+\dfrac{1}{5}\right)+2=0\)
\(\Leftrightarrow x=-\dfrac{2}{\dfrac{1}{2020}+\dfrac{1}{2021}+\dfrac{1}{2022}+\dfrac{1}{2023}+\dfrac{1}{5}}+2024\)
SỬA ĐỀ: b) Chứng tỏ S>n-2... & Điều kiện: \(n\inℕ^∗\) và \(n>2\) (theo quy luật)
a) \(S=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{n^2-1}{n^2}\)
\(S=\left(1-\dfrac{1}{4}\right)+\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{1}{16}\right)+...+\left(1-\dfrac{1}{n^2}\right)\)
\(S=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{n^2}\)
\(S=n-1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)
Nhận xét:
\(n-1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< n-1\)
\(\Rightarrow S< n-1\) (*)
b) Nhận xét:
\(\left\{{}\begin{matrix}\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\\\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\\...\\\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)\cdot n}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{\left(n-1\right)\cdot n}=1-\dfrac{1}{n}< 1\)
\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)>1\)
\(\Rightarrow n-1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)>n-1-1=n-2\)
\(\Rightarrow S>n-2\) (**)
Từ (*) và (**) suy ra:
\(n-2< S< n-1\)
Mà \(n-1\) và \(n-2\) là 2 số tự nhiên liên tiếp nên:
S không thể là một số tự nhiên
Vậy S không thể là một số tự nhiên
A = {\(x\) = 2k + 1/ k\(\in\) N; 6≤ k ≤ 14}
B = {\(x\) = 2k/ k \(\in\) N; 11 ≤ k ≤ 21}
D = {\(x\) = k2/ k \(\in\) N; 2 ≤ k ≤ 7}
A={x\(\in\)N|13<=x<=29; \(x=2k+1;k\in N\)}
B={x\(\in\)N|22<=x<=42: \(x⋮\)2}
C={x\(\in\)N|7<=x<=29; \(x=4k+3\left(k\in N\right)\)}
D={x\(\in\)N|\(4< =x< =49;x=k^2;k\in N\)}
\(x\in\) N; \(x\) + 3 = 10;
\(x\) + 3 = 10
\(x\) = 10 - 3
\(x\) = 7
C = {7}
Diện tích mảnh đất là:
\(50\times8=400\left(m^2\right)\)
Diện tích đất để xây nhà là:
\(400\times25\%=100\left(m^2\right)\)
Vậy...
(3 + x).2 - 47 = -147
(3 + x).2 = -147 + 47
(3 + x).2= - 100
3 + x = -100 : 2
3 + x = -50
x = -50 - 3
x = -53
\(\left(3+x\right)\cdot2-47=-147\)
=>\(2\left(x+3\right)=-147+47=-100\)
=>x+3=-50
=>x=-53
Thuế VAT mà bác Minh phải trả khi mua chiếc điện thoại là:
\(10\%\cdot7990000=799000\left(đ\right)\)
Số tiền mà bác Minh phải trả khi mua chiếc điện thoại là:
\(7990000+799000=8789000\left(đ\right)\)