cho a>=1 b>=1 c >=1 và a^2+b^2+c^2=6 tìm min S=a+b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AB không đổi nên IAB có diện tích lớn nhất khi đường cao cao từ I xuống AB lớn nhất.
Đường cao từ I xuống AB lớn nhất khi trùng với IO
Hay IO vuông góc với AB
Từ đây bạn tìm vị trí điểm M nhé !
\(M=\left(x-1\right)^2+\left(y+3\right)^2+2\)
Có \(\left(x-1\right)^2+\left(y+3\right)^2\ge0\)
=> Mmin = 2 <=> x = -1 và y = 3
Ta có \(M=x^2+y^2-2x+6y+12=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)\(=\left(x-1\right)^2+\left(y+3\right)^2+2\)
Vì \(\left(x-1\right)^2\ge0;\left(y+3\right)^2\ge0\) \(\Rightarrow\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\) \(\Leftrightarrow M\ge2\)
Vậy GTNN của M là 2
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
Ta có \(A\left(x\right)=x^2-4x+24\) \(=\left(x^2-4x+4\right)+20\) \(=\left(x-2\right)^2+20\)
Vì \(\left(x-2\right)^2\ge0\Leftrightarrow\left(x-2\right)^2+20\ge20\Leftrightarrow A\left(x\right)\ge20\)
Vậy giá trị nhỏ nhất của biểu thức đã cho là 20
Dấu "=" xảy ra khi \(x-2=0\Leftrightarrow x=2\)
a, x4 - 1 = (x2 - 1)(x2 +1)
b, x2 + y2 - z2 + 2xy -2z -1
= (x + y)2 - (z +1 )2
= (x + y + z + 1 )( x + y - z - 1)
c, 4x4 + y4 = ???/
a) \(x^4-1=\left(x^2-1\right)\times\left(x^2+1\right)=\left(x-1\right)\times\left(x+1\right)\times\left(x^2+1\right)\)
b) \(=\left(x^2+2xy+y^2\right)-\left(z^2+2z+1\right)\)
\(=\left(x+y\right)^2-\left(z+1\right)^2=\left(x+y+\left(z+1\right)\right)\times\left(x+y-\left(z+1\right)\right)\)
\(=\left(x+y+z+1\right)\left(x+y-z-1\right)\)
c) \(=4x^4+4x^2y^2+y^4-4x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2+2xy+y^2\right)\left(2x^2-2xy+y^2\right)\)
K A B D E I M N O H
Xét tg KAD và tg KEA có
\(\widehat{AKE}\) chung
\(sđ\widehat{KAD}=\dfrac{1}{2}sđ\) cung AD (góc giữa tiếp tuyến và dây cung)
\(sđ\widehat{KEA}=\dfrac{1}{2}sđ\) cung AD (góc nội tiếp)
\(\Rightarrow\widehat{KAD}=\widehat{KEA}\)
=> tg KAD đồng dạng với tg KEA (g.g.g)
\(\Rightarrow\dfrac{KA}{KE}=\dfrac{KD}{KA}\Rightarrow KA^2=KD.KE\)
Xét tg vuông AKO có
\(KA^2=KH.KO\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow KD.KE=KH.KO\Rightarrow\dfrac{KD}{KO}=\dfrac{KH}{KE}\)
Xét tg KDH và tg KOE có
\(\dfrac{KD}{KO}=\dfrac{KH}{KE}\)(cmt)
\(\widehat{EKO}\) chung
=> tg KHD đồng dạng với tg KOE (Hai tam giác có hai cặp cạnh tương ứng tỷ lệ, hai góc xen giữa hai cặp cạnh ấy bằng nhau thì đồng dạng)
\(\Rightarrow\widehat{DHK}=\widehat{OED}\)
Ta có
\(\widehat{DHK}+\widehat{DHO}=180^o\Rightarrow\widehat{OED}+\widehat{DHO}=180^o\)
=> tứ giác DEOH là tứ giác nội tiếp (Tứ giác có tổng hai góc đối nhau = \(180^o\) là tứ giác nội tiếp)
\(\Rightarrow\widehat{ODH}=\widehat{OEH}\) (góc nội tiếp cùng chắn cung OH)
Xét tg DOE có
\(\widehat{DOE}=180^o-\widehat{ODE}-\widehat{OED}\)
Tam giác ODE có OD=OE=R => tg ODE cân tại O
\(\Rightarrow\widehat{ODE}=\widehat{OED}\)
\(\Rightarrow\widehat{DOE}=180^o-2\widehat{ODE}\) (1)
Xét tg DHE có
\(\widehat{DHE}=180^o-\widehat{EDH}-\widehat{DEH}=180^o-\left(\widehat{ODE}+\widehat{ODH}\right)-\left(\widehat{OED}-\widehat{OEH}\right)\)
\(\Rightarrow\widehat{DHE}=180^o-\widehat{ODE}-\widehat{ODH}-\widehat{OED}+\widehat{OEH}\)
Mà \(\widehat{ODE}=\widehat{OED};\widehat{ODH}-\widehat{OEH}\) (cmt)
\(\Rightarrow\widehat{DHE}=180^o-2\widehat{OED}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{DHH}=\widehat{DOE}\) (đpcm)
\(a^2+b^2=4\) suy ra \(\left\{{}\begin{matrix}0\le a\le2\\0\le b\le2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0\le a^3\le2a^2\\0\le b^3\le2b^2\end{matrix}\right.\)
\(a^3+b^3\le2\left(a^2+b^2\right)=8\)
Dấu \(=\) xảy ra tại \(a=2,b=0\) hoặc \(a=0,b=2\).
a2+b2=4a2+b2=4 suy ra {0≤a≤20≤b≤2⇔{0≤a3≤2a20≤b3≤2b2{0≤a≤20≤b≤2⇔{0≤a3≤2a20≤b3≤2b2
a3+b3≤2(a2+b2)=8a3+b3≤2(a2+b2)=8
Dấu == xảy ra tại a=2,b=0a=2,b=0 hoặc a=0,b=2a=0,b=2.
+) a>=1 ; b >=1
=> a-1>=0 ; b-1>=0
=>(a-1)(b-1)>=0
=> ab - b - a + 1 >= 0
=> ab >= a + b - 1
CMTT : bc >= b + c - 1 ; ca >= c + a - 1
=> ab + bc + ca >= 2(a + b + c ) - 3
=> 2(ab+bc+ca)>= 4(a+b+c)-6
+) a^2 + b^2 + c^2 = 6
=> (a+b+c)^2 = 6 +2ab+2bc+2ca
=> (a+b+c)^2 >= 6+4(a+b+c)-6
=> S^2 >= 4S
=> S^2 - 4S >=0
=> S(S-4)>=0
Vì : a>=1;b>=1;c>=1 => S > 0
=> S - 4 >= 0
=> S >= 4
Vậy min S = 4 <=> (a;b;c) là hoán vị của ( 2;1;1 )