Cho a,b,c là các số thực thỏa mãn abc=1 và a+b+c = \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Chứng minh có ít nhất 1 trong các số a,b,c bằng 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ sung: x,y,z dương:
\(VT=\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)\)
Áp dụng BĐT Cô si với các biểu thức trong ngoặc:
\(VT\ge2+2+2=6^{\left(đpcm\right)}\)
Easy!
uk.mik cũng biết rồi nhưng mak làm hơi dài dòng.
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
rồi áp dụng bất đẳng thức cô-si như bạn.
Ta có:
\(a^{2006}+a^{2008}+b^{2006}+b^{2008}\ge2\left(a^{2007}+b^{2007}\right)\)
Dấu = xảy ra khi \(a=b=1\)
\(\Rightarrow S=a^{2009}+b^{2009}=2\)
Đề sai nhé mọi người , đầu tiên tưởng đề đúng nhưng ko phải
Lấy VT - VP
Phân tích ta được (a-b)(b-c)(c-a) < 0 nhé !
(a - b)(a - c)(b - c) \(\ge\)0 (đúng nhưng dấu = không xảy ra.
Do VT là tổng của các giá trị tuyệt đối nên \(\ge0\Rightarrow100x\ge0\Rightarrow x\ge0\)
\(PT\Leftrightarrow\left(x+x+x+...+x\right)+\left(1+2+3+...+99\right)=100x\) (có 99x số x)
\(\Leftrightarrow99x+4950=100x\Leftrightarrow100x-99x=x=4950\)
Vậy \(x=4950\)
Dễ thấy \(x\ge0\)
\(\Rightarrow x+1+x+2+x+3+...+x+99=100x\)
ac là tiếp tuyến (o;r) =) ao vuông góc ac (1
db là tiếp tuyến (o; r)=) ob vuông góc db (2
từ 1, và 2 =) ac//db
=) tứ giac cabd là hình thang
b, dm là tiếp tuyến (o;r)
db là tiếp tuyến (o;r)
=) góc mod bằng góc bod (3)
xét tam giác mon và tam giác bon có :
góc mod = góc bod ( cmt )
mo=ob=r
on chung
=) tam giác mon và tam giác bon bằng nhau ( cgc)
=) mn=nb
lại có :
ao=ob ( =r)
mn=nb (cmt)
=) no là đường trung bình tam giác mab =) no//ma
mà ma vuông mb ( do mo=oa=ob =r => tam giác mab vuông tại m )
=) mb vuông no
hay do vuông mb
tá có : tam giác aeb vuông tại e ( eo=bo=ao=r )
xét tam giác dab
de*da = db^2
xét tam giác : dbo
dn*do=db^2
=) dn*do=de*da
c,
ma//no (cmt )
=> góc dob =góc mao
xét tam giác fao và tam giác dob
góc dob = góc mao
ao=ob (=r)
góc foa = góc dbo
=> tam giác foa = tam giác dbo ( cgv-gn)
fo= db
lại ó : fo vuông ab
db uông ab
=> fo//db (4 )
fo=bd (cmt ) (5)
từ 4, 5 => tứ giác fobd là hình thang
tứ giác fobd là hình thang mà fo vuông ab => tứ giác fobd là hình chữ nhật
d, kẻ cl vuông góc ma vì cm=ca ( mc là tiếp tuyến (o;r) , ca là tiếp tuyến (o;r) )=> tam giác cma là tam giác cân
mà cl lại vuông ma => ml=la hay la= ma/2=r/2
lại có tam giác mao là tam giác đều ( ma=ao=mo=r) => góc mao= 60 độ
góc cam = góc cao - góc mao = 90-60=30 độ
xét tam giác cla vuông tại l
ca= la / cos góc A
ac = (r/2 )/ ( (căn 3)/2 ) = r/(căn 3)
ab = r*2
vì no là đường phân giác tam giác mab => no= 1/2 ma = r/2
xét tam giác dob có :
no*do=ob^2
(r/2)*do=r^2
=> do= r2
xét tam giác dob vuông tại b theo định lý pitago :
do^2- ob^2= db^2 = (r2)^2 - ( r^2)= r^2*3=> db = căn ( r^2*3) = r căn 3
diện tích hình thang :
((ac+db )*ab)/2 = (r^2*4)/căn 3
c
biến đổi tương đương đưa về (a-1)(b-1)(c-1)=0
Ta có : \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a+b+c=\frac{ab+bc+ac}{abc}\)
\(\Leftrightarrow a+b+c=ab+bc+ac\left(abc=1\right)\)
\(\Leftrightarrow1+a+b+c-ab-bc-ac-1=0\)
\(\Leftrightarrow abc+a+b+c-ab-bc-ac-1=0\)
\(\Leftrightarrow ab\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)+c-1=0\)
\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
\(\Leftrightarrow\)a = 1 hoặc b = 1 hoặc c = 1
=> Đpcm