Cho tam giác ABC vuông tại A (AC > AB), M à trung điểm của AB. P là điểm nằm trong tam giác ABC sao cho MP vuông góc với AB. Trên tia đối của tia MP lấy điểm Q sao cho MP = MQ
1) Chứng minh: Tứ giác ABPQ là hình thoi
2) Qua C ve đường thẳng song song với BP cắt tia QP tại E. Chứng minh tứ giác ACEQ là hình bình hành.
3) Gọi N là giao điểm của PE và BC
a) Chứng minh AC = 2MN
b) Cho MN = 3cm, AN = 5cm. Tính chu vi của tam giác ABC
tự kẻ hình nha
a) Vì M là trung điểm AB, PM=MQ, P,M,Q thẳng hàng=> M là trung điểm PQ
=>PQ giao AB tại trung điểm mỗi đường=> APBQ là hbh mà AB vuông góc với PQ=> APBQ là hình thoi
b) vì APBQ là hình thoi=> PB//AQ mà PB//CE=> CE//AQ (1)
ta có PQ vuông góc với AB
AC vuông góc với AB
=> AC//PQ=> EQ//AC ( PQ cắt đường thẳng // với PB tại E=> E thuộc PQ)(2)
từ (1);(2)=> ACEQ là hbh
c) 1) trong tam giác ABC có
MN //AC( N thuộc MP)
AM=MB
=> MN là đtb của tam giác => MN=AC/2=> AC=2MN
2) Vì AC=2MN=> AC=6cm
MN là đtb=> CN=BN
tam giác ABC vuông tại A
=> AN=BN=CN=BC/2( tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông)
=> BC=2AN=10cm
vì tam giác ABC vuông tại A=> AB^2+AC^2=BC^2
=> AB^2=100-36
=> AB=8 (AB>0)
=> chu vi tam giác ABC là 6+8+10=24(cm)