1: tìm nghiệm nguyên của cac pt:
x+5y=7 2x+5y=10
Mn giúp e với 2h chiều nay e phai nộp rồi a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
What is the question? (find the min, max value/ factor/ simplify, etc.)
Ptr có `2` nghiệm pb `<=>\Delta' > 0`
`<=>(-1)^2-(m-1) > 0`
`<=>1-m+1 > 0<=>m < 2`
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=2),(x_1.x_2=c/a=m-1):}`
Có:`x_1 ^2+x_2 ^2-3x_1.x_2=2m^2+|m-3|`
`<=>(x_1+x_2)^2-5x_1.x_2=2m^2+|m-3|`
`<=>2^2-5(m-1)=2m^2+|m-3|`
`<=>4-5m+5=2m^2+|m-3|`
`<=>-2m^2-5m+9=|m-3|` mà `m < 2=>|m-3|=3-m`
`<=>-2m^2-5m+9=3-m`
`<=>2m^2+4m-6=0`
`<=>m^2+2m-3=0`
`<=>m^2+2m+1=4`
`<=>(m+1)^2=4`
`<=>|m+1|=2`
`<=>m+1=+-2`
`<=>m=1` hoặc `m=-3`
(t/m) (t/m)
Vậy `m in {-3;1}` thì t/m yêu cầu đề bài
Kẻ tiếp tuyến Ax của đường tròn (O).
Trong tam giác ABH vuông tại H có đường cao HE nên ta có \(AH^2=AE.AB\)
Tương tự, ta cũng có \(AH^2=AF.AC\), từ đó suy ra \(AE.AB=AF.AC\) hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét \(\Delta AEF\) và \(\Delta ACB\) có \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\left(cmt\right)\) và \(\widehat{A}\) chung
\(\Rightarrow\Delta AEF~\Delta ACB\left(c.g.c\right)\) \(\Rightarrow\widehat{AEF}=\widehat{ACB}\) (1)
Mặt khác, trong đường tròn (O) có \(\widehat{BAx}\) và \(\widehat{ACB}\) lần lượt là góc tạo bởi tiếp tuyến và dây cung, và góc nội tiếp cùng chắn \(\stackrel\frown{AB}\) nên ta có \(\widehat{BAx}=\widehat{ACB}\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{AEF}=\widehat{BAx}\) \(\Rightarrow EF//Ax\) (2 góc so le trong bằng nhau)
Lại có Ax là tiếp tuyến tại A của (O) nên \(Ax\perp OA\) tại A, dẫn đến \(OA\perp EF\) (đpcm)
a) Ta có :
VT : \(\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)
\(=\dfrac{\left(\sqrt{x^2y}+\sqrt{xy^2}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)
\(=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2=x-y\) với \(x>0;y>0\)
VT\(=\)VP nên đẳng thức được chứng minh.
b) Vì \(x>0\) nên \(\sqrt{x^3}=\left(\sqrt{x}\right)^3\)
Ta có :
VT \(\dfrac{\sqrt{x^3}-1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}\right)^3-1^3}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=x+\sqrt{x}+1\) với \(x\ge0;x\ne1\)
VT\(=\)VP nên đẳng thức được chứng minh.
Consider the first equation:
\(x+5y=7\Leftrightarrow x=7-5y\)
We can see that as long as \(y\) is an integer, \(x\) will also be an integer. This means the given equation has an infinite amount of integer roots of \(\left(x;y\right)\) such that \(x=7-5y\)
Now consider the second equation:
\(2x+5y=10\Leftrightarrow y=\dfrac{10-2x}{5}\) (1)
Because \(y\) is an integer, \(\dfrac{10-2x}{5}\) must also be an integer. Therefore, \(10-2x⋮5\)
Since \(10⋮5\), \(2x⋮5\).
We have \(\left(2,5\right)=1\), so \(x⋮5\). Thus, \(x=5k\) (\(k\) is an integer)
From this, we subtitute that in (1) to get \(y=\dfrac{10-2.5k}{5}=\dfrac{10-10k}{5}=2-2k\)
As long as \(k\) is an integer, \(y\) and \(x\) will also be an integer. Therefore, the given equation has an infinite amount of integer roots such that \(y=-\dfrac{2}{5}x+2\)