Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tuổi con năm nay là:
(64 - 24) : 2 = 20 (tuổi)
Tuổi mẹ là:
20 + 24 = 44 (tuổi)
ĐS: ...
Tuổi của mẹ năm nay là:
\(\dfrac{64+24}{2}=44\left(tuổi\right)\)
Tuổi của con năm nay là 44-24=20(tuổi)
Độ dài đoạn tường rào là:
50*39+50*2=50(39+2)=50*41=2050(cm)
Đây là dạng toán nâng cao, chuyên đề trồng cây, cấu trúc thi chuyên, thi học sinh giỏi, thi vioedu. Hôm nay Olm.vn sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Đoạn đường đó có số khoảng là:
39 + 1 = 49 (khoảng)
Độ dài đoạn tường rào là:
50 x 49 = 2450 (cm)
Đáp số: 2450 cm
c: Ta có: KD=KA
mà ΔAKD vuông tại K
nên ΔAKD vuông cân tại K
=>\(\widehat{KAD}=\widehat{KDA}=45^0\)
Ta có: ED//AK
AK\(\perp\)BC
Do đó: ED\(\perp\)BC
Xét tứ giác AEDB có \(\widehat{EAB}+\widehat{EDB}=90^0+90^0=180^0\)
nên AEDB là tứ giác nội tiếp
=>\(\widehat{ADB}=\widehat{AEB}\)
=>\(\widehat{AEB}=45^0\)
Xét ΔAEB vuông tại A có \(\widehat{AEB}=45^0\)
nên ΔAEB vuông cân tại A
=>AE=AB
Lời giải:
Đặt $2n^2=ma$ với $a$ là số nguyên dương
$\Rightarrow m=\frac{2n^2}{a}$
$\Rightarrow n^2+m=n^2+\frac{2n^2}{a}$
Giả sử $n^2+m=n^2+\frac{2n^2}{a})$ là scp. Đặt $n^2+\frac{2n^2}{a}=k^2(k\in\mathbb{N})$
$\Rightarrow n^2a+2n^2=ak^2$
$\Rightarrow n^2(a+2)=ak^2$
$\Rightarrow n^2(a^2+2a)=a^2k^2=(ak)^2$
Mà $a^2+2a\in\mathbb{Z}^+$ nên $\Rightarrow a^2+2a$ cũng phải là 1 scp
Hiển nhiên $a^2+2a=(a+1)^2-1< (a+1)^2$ và $a^2+2a> a^2$
$\Rightarrow a^2< a^2+2a< (a+1)^2$
Theo định lý kẹp thì $a^2+2a$ không thể là scp. Tức là điều gs là vô lý.
$\Rightarrow n^2+m$ không là scp.
Chỉ nên tham khảo thôi:
Giả sử tồn tại n,m thỏa mãn \(n^2+m\) là số chính phương
Đặt \(m=\dfrac{2n^2}{p}\)
-> \(n^2+m=n^2+\dfrac{2n^2}{p}=n^2\left(1+\dfrac{2}{p}\right)\)
->\(1+\dfrac{2}{p}\) là bình phương một số hữu tỉ
->\(1+\dfrac{2}{p}=\dfrac{p+2}{p}=\dfrac{a^2}{b^2}\) với UCLN(a,b)=1 và a>b>0
->\(\left\{{}\begin{matrix}p+2=k\cdot a^2\\p=k\cdot b^2\end{matrix}\right.\)
->\(k\cdot\left(a^2-b^2\right)=2\)
Lại có p+2 và p chia hết cho k nên (p+2)-p=2 chia hết cho k
->k=1 hoặc k=2
TH1: k=1-> \(a^2-b^2=2\)
Nếu a,b cùng chẵn hoặc cùng lẻ thì \(a^2-b^2\) chia hết cho 4(vô lí)
Nếu a,b không cùng tính chẵn lẻ thì \(a^2-b^2\) lẻ (vô lí)
TH2: k=2-> \(a^2-b^2=1\)
-> a=1, b=0(vô lí)
Vậy giả sử sai, suy ra điều phải chứng minh
Lời giải:
Tổng vận tốc hai xe:
$62+40=102$ (km/h)
Hai xe gặp nhau sau:
$225:102\approx 2,2$ (giờ)
Giải:
Bước một em tìm số tròn trăm lớn nhất liền trước 548 153 là:
548 153 - 53 = 548 100
Vì x là số tròn trăm lớn nhất nhỏ hơn 548 153 nên
\(x\) = 584 100
Vậy \(x\) = 584 100
Muốn tìm số tròn trăm lớn nhất liền trước của một số ta lấy số đó trừ đi số được tạo bởi hai chữ số hàng chục và hàng đơn vị của nó.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB~ΔAFC
b: Ta có: ΔAEB~ΔAFC
=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
=>\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
\(\widehat{EAF}\) chung
Do đó: ΔAEF~ΔABC
=>\(\widehat{AFE}=\widehat{ACB}\)
c: Gọi O là trung điểm của AK
Ta có: BICK là hình bình hành
=>BI//CK và BK//CI
ta có: BI//CK
BI\(\perp\)AC
Do đó: CK\(\perp\)CA
=>ΔCKA vuông tại C
=>C nằm trên đường tròn đường kính AK
=>C nằm trên (O)(1)
Ta có: CI//BK
CI\(\perp\)BA
Do đó: BK\(\perp\)BA
=>ΔBKA vuông tại B
=>B nằm trên đường tròn đường kính AK
=>B nằm trên (O)(2)
Từ (1),(2) suy ra ABKC là tứ giác nội tiếp đường tròn (O), đường kính AK
Gọi H là giao điểm của AI với BC
Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại I
Do đó: I là trực tâm của ΔABC
=>AI\(\perp\)BC tại H
Xét (O) có
\(\widehat{CBK}\) là góc nội tiếp chắn cung CK
\(\widehat{CAK}\) là góc nội tiếp chắn cung CK
Do đó: \(\widehat{CBK}=\widehat{CAK}\)
mà \(\widehat{CBK}=\widehat{ICB}\)(hai góc so le trong, IC//BK)
và \(\widehat{ICB}=\widehat{FAI}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{FAI}=\widehat{CAK}\)
Xét ΔFAI vuông tại F và ΔCAK vuông tại C có
\(\widehat{FAI}=\widehat{CAK}\)
Do đó: ΔFAI~ΔCAK
=>\(\dfrac{FA}{CA}=\dfrac{FI}{CK}\)
=>\(\dfrac{FA}{FI}=\dfrac{CA}{CK}\)
=>\(\dfrac{FI}{FA}=\dfrac{CK}{CA}\)