K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2019

nghiện garena ff à cho xin kb nick được ko ạ có thể ghi số id

5 tháng 11 2019

Với x, y, z >0, Có: \(x+y+z\ge3\sqrt[3]{xyz}=3\)

=> Đặt: x + y+z =t => \(t\ge3\)

\(A=\frac{x^2}{1+x}+\frac{y^2}{1+y}+\frac{z^2}{1+z}\ge\frac{\left(x+y+z\right)^2}{3+x+y+z}\)

\(=\frac{t^2}{t+3}=t-3+\frac{9}{t+3}\)

\(=\left(\frac{t+3}{4}+\frac{9}{t+3}\right)+\frac{3\left(t+3\right)}{4}-6\ge2\sqrt{\frac{t+3}{4}.\frac{9}{t+3}}+3.\frac{\left(3+3\right)}{4}-6\)

\(=2.\frac{3}{2}+\frac{9}{2}-6=\frac{3}{2}\)

"=" xảy ra <=> x = y = z =1

5 tháng 11 2019

lên mạng đấy nhé bạn

5 tháng 11 2019

\(x^3-y^3-36xy\)

\(=\left(x-y\right)^3+3xy\left(x-y\right)-36xy\)

\(=12^3+36xy-36xy\)

\(=1728\)

4 tháng 11 2019

\(M=\frac{2}{xy}+\frac{3}{x^2+y^2}\)

\(=3\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{1}{2xy}\)

\(\ge3\cdot\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=12+2=14\)

Dấu "=" xảy ra tại \(x=y=\frac{1}{2}\)

- Nếu n = 1 thì B = 9 thỏa mãn.

- Xét trường hợp n > 1 hay n≥2 thì 2^n+4^n chia hết cho 4, mà 3^n chia cho 4 dư 1 hoặc -1 tương ứng n chẵn hoặc lẻ.

Mà một số chính phương chia cho 4 thì dư 0 hoặc 1, do đó B phải chia 4 dư 1 nên 3^n chia 4 dư 1 suy ra n chẵn

Với n chẵn: 2 chia 3 dư -1 nên 2^n chia 3 dư 1, 4 chia 3 dư 1 nên 4n chia 3 dư 1, 3^n chia hết cho 3. Do đó B chia 3 dư 2 (vô lí) Vì một số chính phương thì chia 3 dư 0 hoặc 1.

Vậy n = 1 là số nguyên dương duy nhất thỏa mãn bài toán.

1 tháng 11 2019

thì làm sao???Hỏi xong rồi tự trả lời thì có ích gì

1 tháng 11 2019

(✿◠‿◠)(๛ČℌUƔÊŇ♥Ť❍Ą́Ňツ)

Ê nhóc đừng có nghĩ lung tung