Cho hàm số f(x) = \(\frac{\sqrt{1-x}+\sqrt{x+1}}{\sqrt{x+2}-\sqrt{2-x}}\). Xét tính chẵn, lẻ của hàm số f
Mọi người làm cho mình tham khảo đáp án.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = {\(x\)|\(x\) \(\in\)N; 0 \(\le\) \(x\) \(\le\)4}
B = {\(x\)| \(x\) = 4k; k \(\in\)N; k < 5}
Gọi tia AI cắt cạnh BC tại M. Đặt \(S_{AMB}=S_C;S_{BMC}=S_A;S_{CMA}=S_B\)
\(\overrightarrow{IA}=-\frac{IA}{IM}.\overrightarrow{IM}=-\frac{IA}{IM}\left(\frac{BM}{a}.\overrightarrow{IC}+\frac{CM}{a}.\overrightarrow{IB}\right)\)
\(=-\frac{S_B+S_C}{S_A}\left(\frac{S_C}{S_B+S_C}.\overrightarrow{IC}+\frac{S_B}{S_B+S_C}.\overrightarrow{IB}\right)\)
\(=-\left(\frac{S_C}{S_A}.\overrightarrow{IC}+\frac{S_B}{S_A}.\overrightarrow{IB}\right)=-\left(\frac{c}{a}.\overrightarrow{IC}+\frac{b}{a}.\overrightarrow{IB}\right)\)
\(\Rightarrow a.\overrightarrow{IA}=-\left(b.\overrightarrow{IB}+c.\overrightarrow{IC}\right)\Rightarrow a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\overrightarrow{0}\)(đpcm).
\(\hept{\begin{cases}y-2>0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}y>2\\x< -1\end{cases}}\)
\(DK:\hept{\begin{cases}-1\le x\le1\\x\ne0\end{cases}}\)
Ta co:
\(f\left(-x\right)=\frac{\sqrt{1-\left(-x\right)}+\sqrt{-x+1}}{\sqrt{-x+2}-\sqrt{2-\left(-x\right)}}=-\left(\frac{\sqrt{1-x}+\sqrt{x+1}}{\sqrt{x+2}-\sqrt{2-x}}\right)=-f\left(x\right)\)
Suy ra: f(x) la ham so chan