cho x, y, z là các số hữu tỉ khác nhau và khác 0 sao cho x+1/y = y+1/z = z+1/x . CMR xyz=1 hoặc xyz=-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bn tự kẻ nha ^^
a, vì N là phân giác \(\widehat{MNP}\)\(\left(gt\right)\Rightarrow\)\(\widehat{END}\)\(=\)\(\widehat{MND}\)
Xét tam giác MND và tam giác END có;
\(\widehat{M}\)\(=\)\(\widehat{E}\)\(=\)\(90\)độ ( gt)
CẠNH ND CHUNG
\(\widehat{MND}\)\(=\)\(\widehat{END}\)( CMT)
\(\Rightarrow\)TAM GIÁC MND \(=\)TAM GIÁC END (G-C-G)
a) Xét tam giác MND vuông tại M và tam giác END vuông tại E có :
ND : cạnh chung
MND=END ( ND phân giác MNE)
Vậy tam giác MND = tam giác END ( ch-gn)
b) Vì tam giác MND = tam giác END (cmt)
=>MN=EN(cctứ); MD=ED(cctứ)
Vì MN=EN(cmt)=> N thuộc đường trung trực của ME (1)
Vì MD=ED(cmt)=> D thuộc đường trung trực của ME(2)
Từ (1) và (2) => ND là đường trung trực của ME
c) Xét tam giác END vuông tại E có :
ED^2 + EN^2 = ND^2 (định lí Pytago)
NE^2 = ND^2 - ED^2
NE^2 = 10^2 - 6^2 = 100 - 36 = 64
=> NE = 8 (cm)
*ko hiểu sao rảnh mà lớp 8 đi giải bài lớp 7 :))))) *
Xét tam giác vuông ABH (AB=9cm là cạnh huyền < BH=26 cm ???.) Hình như đề bài chưa chính xác.
a,Xét tam giác ABM và tam giác ACM ta có:
BM=CM [gt]
góc ABM=góc ACM[gt]
AB=AC[gt]
Rồi suy ra tam giác ABM=ACM
Cậu tự vẽ hình và ghi gt, kl nhé !
a) Vì \(\Delta ABC\)cân tại A (gt) => AB=AC(1) ; góc ABC = góc ACB(2)
Xét \(\Delta ABM\)và \(\Delta ACM,\)có :
AM chung
AB=AC( theo (1) )
BM=MC(gt)
=>\(\Delta ABM=\Delta ACM\left(c.c.c\right)\)
Vậy \(\Delta ABM=\Delta ACM\)
b) Xét \(\Delta BHM\)và \(\Delta CKM\), có :
Góc BHM = góc MKC = 90 độ (gt)
BM=MC (gt)
Góc ABC= góc ACB (theo (2) )
=> \(\Delta BHM=\Delta CKM\)( cạnh huyền - góc nhọn )
=> BH=CK ( hai cạnh tương ứng )
Vậy BH=CK
Với x,y,t,z > 0, ta có : \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\left(1\right)\)
\(\frac{y}{x+y+t}>\frac{y}{x+z+y+t}\left(2\right)\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\left(3\right)\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\left(4\right)\)
Từ (1);(2);(3);(4) => M > \(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\left(a\right)\)
Với x,y,z,t >0 , ta có : \(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\left(5\right)\)
\(\frac{y}{x+y+t}< \frac{y+z}{x+z+y+t}\left(6\right)\)
\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\left(7\right)\)
\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\left(8\right)\)
Từ (5);(6);(7);(8)
=> M < \(\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\left(b\right)\)
Từ (a);(b) => 1<M<2=> M không phải số nguyên (đpcm )
a, có abc cân tại a thì góc abm bằng góc acm và ab bằng ac
m là trung điểm bc nên bm bằng cm
suy ra 2 tam giác.... c-g-c
b, vì tam giác amb bằng tam giác amc nên góc bam bằng góc cam và bằng góc abc chia 2
suy ra am là tia phân giác của góc bac
\(x+\frac{1}{y}=y+\frac{1}{z}=z+\frac{1}{x}\)
\(\Rightarrow\hept{\begin{cases}x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}\\x-z=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(x-z\right)\left(y-z\right)=\frac{\left(y-z\right)\left(y-x\right)\left(z-x\right)}{\left(xyz\right)^2}\)
\(\Rightarrow\left(xyz\right)^2=1\Leftrightarrow\orbr{\begin{cases}xyz=1\\xyz=-1\end{cases}}\).