Đường tròn (O, R), Điểm A nằm ngoài với OA > 2R. Vẽ 2 tiếp tuyến OB, OC (B, C là tiếp điểm). Vẽ đường kính CD. AD cắt (O, R) tại E, cắt BC tại F. BE cắt OA tại M. AB Cắt CD tại I. Chứng minh I, F, M thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách khác nè Phương: (đây là phương pháp chỉ ra một giá trị rồi chứng minh các giá trị còn lại không thỏa mãn)
a/ Giải
+) Với n = 0 thì \(n^2+2n+12=12\) không là số chính phương.
+) Với n = 1 thì \(n^2+2n+12=15\) không là số chính phương.
+) Với n = 2 thì \(n^2+2n+12=20\) không là số chính phương.
+) Với n = 3 thì \(n^2+2n+12=27\) không là số chính phương.
+) Với n = 4 thì \(n^2+2n+12=36=6^2\) là số chính phương.
+) Với n > 4 thì \(n^2+2n+12\) không là số chính phương vì:
\(\left(n+1\right)^2< n^2+\left(2n+12\right)< \left(n+2\right)^2\)
Thật vậy: \(\left(n+1\right)^2< n^2+2n+12\)
\(\Leftrightarrow n^2+2n+12-n^2-2n-1>0\)
\(\Leftrightarrow11>0\) (luôn đúng)
Do vậy \(\left(n+1\right)^2< n^2+2n+12\) (1)
C/m: \(n^2+\left(2n+12\right)< \left(n+2\right)^2\)
\(\Leftrightarrow n^2+4n+4-n^2-2n-12>0\)
\(\Leftrightarrow2n-8>0\) (luôn đúng do n > 4) (2)
Từ (1) và (2) suy ra với n > 4 thì \(\left(n+1\right)^2< n^2+\left(2n+12\right)< \left(n+2\right)^2\) hay \(n^2+2n+12\) không là số chính phương.
Vậy 1 giá trị n = 4
b/ +)Với n = 0 thì \(n\left(n+3\right)=0\) là số chính phương
+) Với n = 1 thì \(n\left(n+3\right)=4\) là số chính phương
+) Với n > 1 thì \(n\left(n+3\right)\) không là số chính phương vì:
\(\left(n+1\right)^2< n\left(n+3\right)< \left(n+2\right)^2\)
Thật vậy: \(\left(n+1\right)^2< n\left(n+3\right)\Leftrightarrow n^2+3n-n^2-2n-1>0\)
\(\Leftrightarrow n-1>0\) (đúng với mọi n > 1) (1)
Ta sẽ c/m: \(n\left(n+3\right)< \left(n+2\right)^2\)
\(\Leftrightarrow n^2+4n+4-n^2-3n>0\)
\(\Leftrightarrow n+4>0\) (luôn đúng với mọi n > 0) (2)
Từ (1) và (2) suy ra với mọi n > 1 thì \(n\left(n+3\right)\) không là số chính phương.
Vậy n = 0;n = 1
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
40\(13-y)-40/y=0
40[y-(13-y)/(13-y)y]=0
2y-13/(13-y)y=0
2y=13
y=13/2
toán lớp 7 mà
\(\frac{40}{13-y}-\frac{40}{y}=0\)
\(\Rightarrow40\left(\frac{1}{13-y}-\frac{1}{y}\right)=0\)
\(\Rightarrow40\left(\frac{2y-13}{y\left(13-y\right)}\right)=0\)
\(\Rightarrow\frac{2y-13}{y\left(13-y\right)}=0\)
\(\Rightarrow2y-13=0\)
\(\Rightarrow y=\frac{13}{2}\)
ĐKXĐ : \(x;y\ne0\)
\(x-y=-1\Leftrightarrow x=-1+y\)
Khi đó : \(\frac{2}{y-1}+\frac{3}{y}=2\)
\(\Leftrightarrow\frac{2y}{y\left(y-1\right)}+\frac{3\left(y-1\right)}{y\left(y-1\right)}=2\)
\(\Leftrightarrow\frac{2y+3y-3}{y\left(y-1\right)}=2\)
\(\Rightarrow5y-3=2y\left(y-1\right)\)
\(\Leftrightarrow5y-3=2y^2-2y\)
\(\Leftrightarrow2y^2-2y-5y+3=0\)
\(\Leftrightarrow2y^2-7y+3=0\)
\(\Leftrightarrow2y^2-6y-y+3=0\)
\(\Leftrightarrow2y\left(y-3\right)-\left(y-3\right)=0\)
\(\Leftrightarrow\left(y-3\right)\left(2y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=3\\y=\frac{1}{2}\end{cases}}\)( thỏa mãn ĐKXĐ )
TH1 : \(\hept{\begin{cases}y=3\\x-3=-1\end{cases}\Leftrightarrow\hept{\begin{cases}y=3\\x=2\end{cases}}}\)( thỏa mãn )
TH2 : \(\hept{\begin{cases}y=\frac{1}{2}\\x-\frac{1}{2}=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)( thỏa mãn )
Vậy....
Tìm delta = b^2 -4ac =(-1)^2 -4.1.(-30) =1+120 =121
Tacó
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) => x1= 6 x2 = -5
x^5+y^5≥x^2.y^2(x+y)
x^5+y^5≥x^2.y^2(x+y)
ta có: x^5+y^5=(x+y)(x^4−x^3y+x^2y^2−x.y^3+y^4)=(x+y)((x−y)^2(x^2−xy+y^2)+x^2y^2)x^5+y^5=(x+y)(x^4−x^3y+x^2y^2−xy^3+y^4)=(x+y)((x−y)^2(x^2−xy+y^2)+x^2y^2). Vì (x−y)^2(x2−xy+y2)≥0(x−y)2(x^2−xy+y^2)≥0 nên ((x−y)^2(x^2−xy+y^2)+x^2y^2)≥x^2y^2((x−y)2(x2−xy+y2)+x2y2)≥x2y2 nên ta có đpcm.
trở lại bài toán:
aba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+caba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+c
Tương tự với 2 cái còn lại rồi cộng lại được đpcm.
x+y5≥x2.y2(x+y)x5+y5≥x2.y2(x+y)
thật vậy, ta có: x5+y5=(x+y)(x4−x3y+x2y2−xy3+y4)=(x+y)((x−y)2(x2−xy+y2)+x2y2)x5+y5=(x+y)(x4−x3y+x2y2−xy3+y4)=(x+y)((x−y)2(x2−xy+y2)+x2y2). Vì (x−y)2(x2−xy+y2)≥0(x−y)2(x2−xy+y2)≥0 nên ((x−y)2(x2−xy+y2)+x2y2)≥x2y2((x−y)2(x2−xy+y2)+x2y2)≥x2y2 nên ta có đpcm.
trở lại bài toán:
aba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+caba5+b5+ab≤aba2b2(a+b)+ab=1ab(a+b)+1=cabc(a+b)+c=ca+b+c
Tương tự với 2 cái còn lại rồi cộng lại được đpcm.
Có lẽ là đề nhầm (Đề này trong tuyển tập "Bộ đề hính học lớp 9). Đúng ra phải là BE cắt AC tại M