Cho tam giác ABC Đường cao AH.gọi I là trung Điểm AC,E là điểm đối xứng h qua I.cmr tg AHCE là hình chữ nhật.Gọi K là trung Điểm của AH CMR HC=2.IC và Ik vuông góc AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x^2}{x-1}-\frac{2x}{x-1}+\frac{1}{x-1}\)
\(=\frac{x^2-2x+1}{x-1}\)
\(=\frac{\left(x-1\right)^2}{x-1}=x-1\)
b) \(\left(\frac{1}{1-2x}+\frac{1}{1+2x}\right):\frac{1}{1-2x}\)
\(=\left(\frac{1+2x}{\left(1-2x\right)\left(1+2x\right)}+\frac{1-2x}{\left(1+2x\right)\left(1-2x\right)}\right):\frac{1}{1-2x}\)
\(=\frac{2}{\left(1-2x\right)\left(1+2x\right)}.\left(1-2x\right)\)
\(=\frac{2}{1+2x}\)
1) Biến đồi tương đương:
\(\left(x^2+y^2\right)^2\ge8\left(x-y\right)^2\)
\(\Leftrightarrow\left(x^2+y^2\right)^2\ge8xy\left(x-y\right)^2\)
\(\Leftrightarrow\left(x^2-4xy+y^2\right)^2\ge0\)(đúng)
2) Sửa đề: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\left(\text{với }xy\ge1\right)\)
\(\Leftrightarrow\frac{\left(x-y\right)^2\left(xy-1\right)}{\left(x^2+1\right)\left(y^2+1\right)\left(xy+1\right)}\ge0\) (đúng)
Bài 1:
Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)
Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.
Bài 2: 2 bài đều dùng Svac cả!
vì a=by+cz => by=a-cz
mà c=ax+by => by=c-ax
=>a-cz=c-ax (=by)
=> a+ax=c+cz
=> a(x+1)=c(z+1)
tương tự với c=ax+by và b=ax+cz
=> c(z+1)=b(y+1)
=> a(x+1)=b(y+1)=c(z+1)
đặt a(x+1)=b(y+1)=c(z+1)=k
=> 3k=a(x+1)+b(y+1)+c(z+1)
ta có
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{1+z}=\frac{a}{a\left(x+1\right)}+\frac{b}{b\left(y+1\right)}+\frac{c}{c\left(z+1\right)}=\frac{a}{k}+\frac{b}{k}+\frac{c}{k}=\frac{a+b+c}{k}\)
\(\frac{3\left(a+b+c\right)}{3k}=\frac{3\left(a+b+c\right)}{\text{ }a\left(x+1\right)+b\left(y+1\right)+c\left(z+1\right)}=\frac{3\left(a+b+c\right)}{ax+a+by+b+cz+c}\)
\(=\frac{3\left(a+b+c\right)}{\left(a+b+c\right)+\left(ax+by+cz\right)}=\frac{3\left(a+b+c\right)}{\left(a+b+c\right)+\frac{1}{2}\left[\left(ax+by\right)+\left(by+cz\right)+\left(cz+ax\right)\right]}\)
ta thấy a+b+c= (ax+by)+(by+cz)+(cz+ax)
\(\Rightarrow\frac{3\left(a+b+c\right)}{\left(a+b+c\right)+\frac{1}{2}\left(a+b+c\right)}=\frac{3\left(a+b+c\right)}{\frac{3}{2}\left(a+b+c\right)}=\frac{3}{\frac{3}{2}}=2\)
vậy \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)ko phụ thuộc vào a,b,c
\(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+zx}\)=\(\frac{1}{1+x+xy}+\frac{x}{x.\left(1+y+yz\right)}+\frac{xy}{xy\left(1+z+zx\right)}\)
=\(\frac{1}{1+x+xy}+\frac{x}{x+xy+xyz}+\frac{xy}{xy+xyz+zxyx}\)
=\(\frac{1}{1+x+xy}+\frac{x}{x+xy+1}+\frac{xy}{xy+1+x}\)(vì xyz=1)
=\(\frac{1+x+xy}{1+x+xy}\)
=1
đề là như thế này đúng ko anh ?
\(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}\)\(+\frac{1}{z+zx}\)
= \(\frac{xyz}{x\left(1+y+yz\right)}+\frac{1}{1+y+yz}\)\(+\frac{y}{y+yz+xyz}\)
=\(\frac{yz+y+1}{1+y+yz}\)
=\(1\)
ủa em hỏi rút gọn đến đây bằng 1 thì tính xong rồi :))
Tiện tay chém trước vài bài dễ.
Bài 1:
\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)
Bài 2:
1) Thấy nó sao sao nên để tối nghĩ luôn
2)
c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi a = 0; b = 1