K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(2^3\cdot2^2\cdot2^4=2^{3+2+4}=2^9\)

2: \(2^3\cdot2\cdot2^5=2^{3+1+5}=2^9\)

3: \(10^2\cdot10^3\cdot10^5=10^{2+3+5}=10^{10}\)

4: \(x\cdot x^5=x^{1+5}=x^6\)

5: \(a^3\cdot a^2\cdot a^5=a^{3+2+5}=a^{10}\)

6: \(x^5\cdot x^4\cdot x\cdot x^7\cdot x^6=x^{5+4+1+7+6}=x^{23}\)

7: \(10\cdot10^2=10^{1+2}=10^3\)

8: \(10\cdot100\cdot10^3=10\cdot10^2\cdot10^3=10^6\)

9: \(10\cdot100\cdot10^4\cdot1000=10\cdot10^2\cdot10^4\cdot10^3=10^{10}\)

10: \(5^3:5^2=5^{3-2}=5^1\)

11: \(3^3:3^3=3^{3-3}=3^0\)

12: \(2^7:2^3=2^{7-3}=2^4\)

13: \(4^8:4^4=4^{8-4}=4^4\)

14: \(9^5:9^2=9^{5-2}=9^3\)

15: \(8^9:8^7=8^{9-7}=8^2\)

16: \(a^6:a^3=a^{6-3}=a^3\)

17: \(b^9:b^4=b^{9-4}=b^5\)

29 tháng 7 2024

khai triển đa thức ta đc:

=x2-4x+4+x2+4x+4+x3+9x2+27x+27+27x3+27x2+9x+1

=28x3+36x2+36x+36

Vậy hệ số của x2 sau khi khai triển là 36

29 tháng 7 2024

a)Xét △HCA và △ACBB

\(\left\{{}\begin{matrix}\widehat{BAC}=\widehat{AHC\left(=90\right)\left(gt\right)}\\\widehat{ACB}chung\end{matrix}\right.\)

⇒△HCA và △ACB (g.g)

b)Có △AHC vuông tại H, HE là đường cao (gt)

⇒EH2=AE.EC ( nhận xét hai △ đồng dạng trong △vuông)

Bài 1;

a: ABCD là hình thang cân

=>\(\widehat{D}=\widehat{C}=60^0\)

ABCD là hình thang

=>\(\widehat{BAD}+\widehat{ADC}=180^0\)

=>\(\widehat{BAD}=120^0\)

ABCD là hình thang cân

=>\(\widehat{BAD}=\widehat{ABC}\)

=>\(\widehat{ABC}=120^0\)

b: Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

\(\widehat{ADE}=\widehat{BCF}\)

Do đó: ΔAED=ΔBFC

=>AE=BF

Bài 4:

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

b: ΔAHB=ΔAKC

=>BH=CK

Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

KC=HB

Do đó: ΔKBC=ΔHCB

c: ΔAHB=ΔAKC

=>AH=AK

Xét ΔABC có \(\dfrac{AH}{AC}=\dfrac{AK}{AB}\)

nên KH//BC

Xét tứ giác BKHC có KH//BC và BH=KC

nên BKHC là hình thang cân

29 tháng 7 2024

Sao dấu + với dấu - lại ở ngay cạnh nhau được bạn nhỉ? Hay ý bạn là: 

\(\dfrac{7}{21}+\dfrac{-21}{7}\) 

Lần sau bạn bấm vài biểu tượng Σ để nhập các công thức toán học nhé!

\(\dfrac{15}{34}+\dfrac{15}{17}+\dfrac{19}{34}-1\dfrac{15}{17}+\dfrac{2}{3}\)

\(=\dfrac{15}{34}+\dfrac{19}{34}+\dfrac{15}{17}-1-\dfrac{15}{17}+\dfrac{2}{3}\)

\(=1-1+\dfrac{2}{3}=\dfrac{2}{3}\)

a: Ta có: \(\widehat{bMB}=\widehat{NMC}\)(hai góc đối đỉnh)

mà \(\widehat{bMB}=50^0\)

nên \(\widehat{NMC}=50^0\)

Ta có: \(\widehat{MNC}+\widehat{aNC}=180^0\)(hai góc kề bù)

=>\(\widehat{MNC}+110^0=180^0\)

=>\(\widehat{MNC}=70^0\)

Xét ΔMNC có \(\widehat{NMC}+\widehat{MNC}+\widehat{C}=180^0\)

=>\(\widehat{C}+50^0+70^0=180^0\)

=>\(\widehat{C}=60^0\)

b: Ta có: \(\widehat{NMB}+\widehat{NMC}=180^0\)(hai góc kề bù)

=>\(\widehat{NMB}+50^0=180^0\)

=>\(\widehat{NMB}=130^0\)

Ta có: MN//AB

=>\(\widehat{CMN}=\widehat{CBA}\)(hai góc đồng vị)

=>\(\widehat{CBA}=50^0\)

BN là phân giác của góc CBA

=>\(\widehat{NBM}=\dfrac{\widehat{ABC}}{2}=25^0\)

Xét ΔNMB có \(\widehat{NMB}+\widehat{BNM}+\widehat{NBM}=180^0\)

=>\(\widehat{MNB}=180^0-130^0-25^0=25^0\)

c: BN là phân giác của góc CBA

=>\(\widehat{ABN}=\dfrac{\widehat{ABC}}{2}=25^0\)

Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)

=>\(\widehat{BAN}+60^0+50^0=180^0\)

=>\(\widehat{BAN}=70^0\)

Xét ΔBAN có \(\widehat{BAN}+\widehat{ABN}+\widehat{ANB}=180^0\)

=>\(\widehat{ANB}=180^0-75^0-25^0=85^0\)

Bài 4: \(8^{10}\cdot125^{10}< =2^n\cdot5^n< =20^{16}\cdot5^{16}\)

=>\(1000^{10}< =10^n< =100^{16}\)

=>\(10^{30}< =10^n< =10^{32}\)

=>30<=n<=32

mà n là số tự nhiên

nên \(n\in\left\{30;31;32\right\}\)

Bài 1:

1: \(3^{-2}\cdot3^4\cdot3^n=3^7\)

=>\(3^n\cdot3^2=3^7\)

=>n+2=7

=>n=7-2=5

2: \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\)

=>\(2^n\left(\dfrac{1}{2}+4\right)=2^5\cdot9\)

=>\(2^n=9\cdot2^5:\dfrac{9}{2}=2^6\)

=>n=6

Bài 2:

1: \(243>=3^n>=9\)

=>\(3^2< =3^n< =3^5\)

=>2<=n<=5

mà n là số tự nhiên

nên \(n\in\left\{2;3;4;5\right\}\)

2: \(2^{n+3}\cdot2^n=144\)

=>\(2^{2n+3}=144\)

=>\(2n+3=log_2144\)

=>\(2n=log_2144-3\)

=>\(n=\dfrac{log_2144-3}{2}\left(loại\right)\)

Bài 3:

\(10^x:5^y=20^y\)

=>\(10^x=20^y\cdot5^y=100^y=10^{2y}\)

=>x=2y

vậy: \(\left(x;y\right)\in\){(2k;k)|\(k\in N\)}

 

a: Ta có: \(\widehat{ICA}+\widehat{ICB}=\widehat{ACB}=90^0\)

\(\widehat{ICB}+\widehat{NCB}=\widehat{NCI}=90^0\)

Do đó: \(\widehat{ICA}=\widehat{NCB}\)

Ta có: \(\widehat{CAI}+\widehat{CBI}=90^0\)(ΔCBA vuông tại C)

\(\widehat{CBI}+\widehat{CBN}=\widehat{NBI}=90^0\)

Do đó: \(\widehat{CAI}=\widehat{CBN}\)

Xét ΔCAI và ΔCBN có

\(\widehat{CAI}=\widehat{CBN}\)

\(\widehat{ICA}=\widehat{NCB}\)

Do đó: ΔCAI~ΔCBN

b: Ta có: \(\widehat{ACM}+\widehat{ACI}=\widehat{ICM}=90^0\)

\(\widehat{ICA}+\widehat{ICB}=\widehat{ACB}=90^0\)

Do đó: \(\widehat{ACM}=\widehat{ICB}\)

Ta có: \(\widehat{CAM}+\widehat{CAB}=\widehat{BAM}=90^0\)

\(\widehat{CAB}+\widehat{CBA}=90^0\)(ΔCAB vuông tại C)

Do đó: \(\widehat{CAM}=\widehat{CBA}\)

Xét ΔCAM và ΔCBI có

\(\widehat{CAM}=\widehat{CBI}\)

\(\widehat{ACM}=\widehat{BCI}\)

Do đó: ΔCAM~ΔCBI

=>\(\dfrac{AC}{CB}=\dfrac{AM}{BI}\)

=>\(AC\cdot BI=MA\cdot BC\)

c: Xét tứ giác CIBN có \(\widehat{ICN}+\widehat{IBN}=90^0+90^0=180^0\)

nên CIBN là tứ giác nội tiếp

=>\(\widehat{CIN}=\widehat{CBN}\)

=>\(\widehat{CIN}=\widehat{BAC}\)