Tìm x,y thuộc Z sao cho \(x^2+xy+y^2=x+y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = (3x - 2)^2 - 3(x - 4)(4 + x) + (x - 3)^3 - (x^2 - x + 1)(x + 1)
D = 9x^2 - 12x + 4 - 3x^2 + 48 + x^3 - 9x^2 + 27x - 27 - x^3 - 1
D = -3x^2 + 15x + 24
3b)
Ta có \(4xy\le\left(x+y\right)^2\) nên \(x+y-16xyz\ge x+y-4z\left(x+y\right)^2\)
\(=1-z+4z\left(1-z\right)^2\)
\(=\left(1-z\right)\left[1-4z\left(1-z\right)\right]\)
\(=\left(1-z\right)\left(1-4z+4z^2\right)\)
\(=\left(1-z\right)\left(1-2z\right)^2\) \(\ge0\) (do \(z< 1\))
Từ đó suy ra \(x+y-16xyz\ge0\)
ĐTXR \(\Leftrightarrow\left\{{}\begin{matrix}x=y\\z=\dfrac{1}{2}\\x+y+z=1\end{matrix}\right.\Leftrightarrow\left(x;y;z\right)=\left(\dfrac{1}{4};\dfrac{1}{4};\dfrac{1}{2}\right)\).
Kí hiệu \(S\) là tổng tất cả các số trên cùng 1 hàng, cột hay đường chéo. Dễ dàng kiểm chứng được \(-6\le S\le6\). Ta thấy từ \(-6\) đến \(6\) có tất cả là 13 số nguyên. Nói cách khác, sẽ có tất cả 13 giá trị khác nhau mà \(S\) có thể đạt được. Do trên bảng 6x6 có 6 cột, 6 hàng, 2 đường chéo ứng với 14 tổng S nên theo nguyên lí Dirichlet, sẽ tồn tại 2 tổng S mang cùng 1 giá trị, đây là đpcm.
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
C = \(x^2\) - 12 \(x\) + 34
C = (\(x^2\) - 12\(x\) + 36) - 2
C = (\(x\) - 6)2 - 2
Vì (\(x\) - 6)2 ≥ 0 ⇒ ( \(x\) - 6)2 - 2 ≥ -2
C(min) = - 2 ⇔ \(x\) - 6 = 0 ⇔ \(x\) = 6
Vậy giá trị nhỏ nhất của biểu thức là - 2 xảy ra khi \(x\) = 6
C = �2x2 - 12 �x + 34
C = (�2x2 - 12�x + 36) - 2
C = (�x - 6)2 - 2
Vì (�x - 6)2 ≥ 0 ⇒ ( �x - 6)2 - 2 ≥ -2
C(min) = - 2 ⇔ �x - 6 = 0 ⇔ �x = 6
Vậy giá trị nhỏ nhất của biểu thức là - 2 diễn ra khi �x = 6
A = - 4\(x\)2 + 5\(x\) - 3
A = -( 4\(x^2\) - 5\(x\) + \(\dfrac{25}{16}\)) - \(\dfrac{23}{16}\)
A = -( 2\(x\) - \(\dfrac{5}{4}\))2 - \(\dfrac{23}{16}\)
Vì ( 2\(x\) - \(\dfrac{5}{4}\))2 ≥ 0; ⇒ - ( 2\(x\) - \(\dfrac{5}{4}\))2 ≤ 0 ⇒ -( 2 \(x\) - \(\dfrac{5}{4}\))2 - \(\dfrac{23}{16}\) ≤ - \(\dfrac{23}{16}\)
A(max) = - \(\dfrac{23}{16}\) ⇔ 2\(x\) - \(\dfrac{5}{4}\) = 0 ⇔ \(x\) = \(\dfrac{5}{4}\): 2 = \(\dfrac{5}{8}\)
Kết luận giá trị lớn nhất của biểu thức là - \(\dfrac{23}{16}\) xáy ra khi \(x\) = \(\dfrac{5}{8}\)
\(x^2+xy+y^2=x+y\)
\(\Leftrightarrow2x^2+2xy+2y^2-2x-2y=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)
Tới đây do \(2=1^2+1^2+0^2\) , đồng thời để ý rằng vai trò \(x,y\) như nhau nên ta sẽ có 2TH
TH1: \(x+y=0\) và \(\left(x-1\right)^2+\left(y-1\right)^2=1^2+1^2\) (1)
khi đó \(y=-x\) nên \(x-1\ne y-1\). Do đó từ (1), giả sử \(x\ge y\) suy ra \(\left\{{}\begin{matrix}x-1=1\\y-1=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\), vô lí. Làm tương tự với \(y\ge x\)
TH2: \(x+y\ne0\). Khi đó \(x+y=\pm1\).
TH2.1: \(x+y=1\). Khi đó từ (1), suy ra 1 trong 2 số \(x-1,y-1\) phải bằng 0. Do vai trò x, y như nhau nên giả sử \(x-1=0\)\(\Leftrightarrow x=1\), khi đó \(y=0\), thỏa mãn. Ta tìm được nghiệm \(\left(x;y\right)=\left(1;0\right)\). Tương tự, tìm được nghiệm \(\left(x;y\right)=\left(0;1\right)\)
TH2.2: \(x+y=-1\). Giả sử \(x-1=0\) \(\Leftrightarrow x=1\), khi đó \(y=-2\), loại.
Như vậy, pt đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;1\right);\left(1;0\right)\right\}\)
Cách thứ 2 nhé:
\(x^2+xy+y^2=x+y\)
\(\Leftrightarrow x^2+\left(y-1\right)x+y^2-y=0\)
\(\Delta=\left(y-1\right)^2-4\left(y^2-y\right)\) \(=\left(y-1\right)^2-4y\left(y-1\right)\) \(=\left(y-1\right)\left[\left(y-1\right)-4y\right]\) \(=\left(y-1\right)\left(-1-3y\right)\).
Để pt đã cho có nghiệm thì \(\Delta=-\left(y-1\right)\left(3y+1\right)\ge0\) \(\Leftrightarrow\left(y-1\right)\left(3y+1\right)\le0\) \(\Leftrightarrow-\dfrac{1}{3}\le y\le1\). Do \(y\inℤ\) nên \(y\in\left\{0;1\right\}\). Nếu \(y=0\) thì thay vào pt đầu, dễ dàng suy ra \(x=1\). Còn nếu \(y=1\) thì cũng dễ dàng suy ra \(x=0\).
Vậy ohương trình đã cho có nghiệm \(\left(x;y\right)\in\left\{\left(0;1\right);\left(1;0\right)\right\}\)