Chứng minh rằng:
x^2-4x+5>0
x^2+6x+10>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a. Xét ΔABD có AB=BD
⇒ΔABD cân B
⇒∠BAD=∠BDA
b. Do ∠BAD=∠BDA
mà ∠BAD=∠KDA ( so le trong )
⇒∠KDA=∠HDA
Xét ΔADK và ΔADH có ∠AKD=∠AHD=90 độ
∠KDA=∠HDA
AD chung
⇒ΔADK = ΔADH (ch-gn)
⇒∠KAD=∠HAD
⇒AD là phân giác ∠HAC
c. Do ΔADK = ΔADH
⇒AK=AH
Giải thích các bước giải:
Xét tam gíac ABC có các đường trung tuyến AM, BD, CE. Đặt BC= a; AC= c. Theo bài ra ta có: AM< b+c2b+c2
CMTT: BD< a+c2a+c2 ; CE < a+b2a+b2
=>AM+BD+CE < a+b+c
Ta có BD+CE> 3232 a
CMTT ta có:AM+CE > 3232 b
AM+BD>3232 c
=>2(AM+BD+CE) > 3232 (a+b+c)
Do đó : AM+BD+CE > 3434 (a+b+c)
Tam giác ADE cân tại A (AD = AE)
=>
A
D
E
=
90
0
−
D
A
E
2
mà
A
B
C
=
90
0
−
B
A
C
2
=> ADE = ABC
mà 2 góc này ở vị trí đồng vị
=> DE // BC
AB = AC (tam giác ABC cân tại A)
AD = AE (gt)
=> AB - AD = AC - AE
=> BD = CE
Xét tam giác DBM và tam giác ECM có:
DB = EC (chứng minh trên)
DBM = ECM (tam giác ABC cân tại A)
BM = CM (M là trung điểm của BC)
=> Tam giác MBD = Tam giác MCE (c.g.c)
Xét tam giác AMD và tam giác AME có:
AM chung
MD = ME (Tam giác MBD = Tam giác MCE)
DA = EA (gt)
=> Tam giác AMD = Tam giác AME (c.g.c)
Thay x = 1/2 ; y = -1/2 vào đa thức M ta được :
\(M=11x^2y-x^2-y^2x=x^2\left(11y-1\right)-y^2x\)
\(\Rightarrow M=\frac{1}{4}\left[11.\left(-\frac{1}{2}\right)-1\right]-\frac{1}{4}.\frac{1}{2}=\frac{1}{4}\left(-\frac{11}{2}-1\right)-\frac{1}{8}\)
\(=\frac{1}{4}.\frac{-13}{2}-\frac{1}{8}=-\frac{13}{8}-\frac{1}{8}=-\frac{14}{8}=-\frac{7}{4}\)
Ta có AD//BE (gt) (1)
Mặt khác
Trên tia đối của tia KD lấy điểm I sao cho KI = KD
Xét tam giác KIE và tam giác KDC có
KI = KD (gt)
KE = KC (gt)
góc (IKE) = góc(DKC) (đối đỉnh)
=> tam giác KIE = tam giác KDC (c-g-c) (*)
=> góc (KIE) = góc (KDC) (2 góc tương ứng)
=> CD//IE hay BC//IE
=> góc (BDC) = góc (IED) (2 góc sole trong) (2)
và IE = CD (2 cạnh tương ứng) (3)
mà DC = DB (4)
Từ (3) và (4) suy ra IE = BD (5)
DE (cạnh chung) (6)
Từ (2), (5) và (6)
=> tam giác BED = tam giác IED (c-g-c)
=> góc IDE = góc BED (2 góc tương ứng)
=> ID//BD hay DK//BE (7)
Từ (1) và (7) suy ra A, D, K thẳng hàng
x^2-6x+10=x^2-6x+9+1
=(x-3)^2+1
Do (x-3)^2>=0 nên (x-3)^2+1 >=1 >0 với mọi x
Ta có x2 - 4x + 5 = x2 - 2x - 2x + 4 + 1 = x(x - 2) -2(x - 2) + 1 = (x - 2)(x - 2) + 1 = (x - 2)2 + 1 \(\ge1>0\forall x\)
Ta có : x2 + 6x + 10 = x2 + 3x + 3x + 9 + 1 = x(x + 3) + 3(x + 3) + 1 = (x + 3)(x + 3) + 1 = (x + 3)2 + 1 \(\ge1>0\forall x\)