K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2024

ko bt

 

26 tháng 2 2024

ko bt

Đọc nội dung bảng tư liệu sau, kết hợp với hiểu biết của mình, em hãy nhận xét vai trò của C.Mác, Ph.Ăng-ghen đối với phong trào công nhân và cộng sản quốc tế cuối thế kỉ XIX - đầu thế kỉ XX. Em hãy cho biết, sự kiện nào đánh dấu sự ra đời của chủ nghĩa xã hội khoa học?  Thời gian Hoạt động Năm 1842 Ph.Ăng-ghen sang Anh, tìm hiểu thực tế phong trào công nhân...
Đọc tiếp

Đọc nội dung bảng tư liệu sau, kết hợp với hiểu biết của mình, em hãy nhận xét vai trò của C.Mác, Ph.Ăng-ghen đối với phong trào công nhân và cộng sản quốc tế cuối thế kỉ XIX - đầu thế kỉ XX. Em hãy cho biết, sự kiện nào đánh dấu sự ra đời của chủ nghĩa xã hội khoa học? 

Thời gian Hoạt động
Năm 1842 Ph.Ăng-ghen sang Anh, tìm hiểu thực tế phong trào công nhân ở đây và biên soạn nhiều tài liệu, trong đó có cuốn Tình cảnh giai cấp công nhân Anh.
Năm 1843 Sau khi bị trục xuất khỏi Đức, C.Mác sang Pa-ri (Pháp) và tham gia phong trào cách mạng ở Pháp. 
Năm 1844 C.Mác và Ph.Ăng-ghen thành lập Đồng minh những người cộng sản - chính đảng độc lập đầu tiên của vô sản quốc tế. 
Đầu năm 1848 C.Mác và Ph.Ăng-ghen soạn thảo và công bố Tuyên ngôn của Đảng Cộng sản - Cương lĩnh của Đồng minh những người cộng sản. 
Năm 1864 Quốc tế thứ nhất được thành lập, C.Mác tham gia Ban lãnh đạo. 
Năm 1889 Quốc tế thứ hai ra đời ở Pa-ri gắn với vai trò quan trọng của Ph.Ăng-ghen.

 

 

0
26 tháng 2 2024

Em xem lại đề. Đề sai tùm lum rồi

Gọi ba số tự nhiên liên tiếp lần lượt là x;x+1;x+2

Cộng ba tích, mỗi tích của tích của hai trong ba số trên thì được 26 nên ta có:

\(x\left(x+1\right)+\left(x+1\right)\left(x+2\right)+x\left(x+2\right)=26\)

=>\(x^2+x+x^2+3x+2+x^2+2x=26\)

=>\(3x^2+6x+2-26=0\)

=>\(3x^2+6x-24=0\)

=>\(x^2+2x-8=0\)

=>(x+4)(x-2)=0

=>\(\left[{}\begin{matrix}x=-4\left(loại\right)\\x=2\left(nhận\right)\end{matrix}\right.\)

Vậy: Ba số liên tiếp cần tìm là 2;3;4

26 tháng 2 2024

                         Giải:

Ba số tự nhiên liên tiếp có dạng: n; n + 1;  n + 2 (n \(\in\)  N*)

Tích của số thứ nhất và số thứ hai là: n.(n + 1)

Tích của số thứ nhất và số thứ ba là: n.(n + 2) 

Tích của số thứ hai và số thứ ba là: (n + 1).(n + 2)

Theo bài ra ta có:

 n(n + 1) + n(n+2) + (n + 1)(n + 2) = 26

 n2 + n + n2 + 2n + n2 + n + 2n + 2  = 26

 3n2 + 6n + 2  - 26 = 0

3n2 + 6n -  24 = 0

3n2 - 12 + 6n - 12= 0

(3n2 - 12) + (6n - 12) = 0

3(n2 - 4) + 6(n - 2) = 0

3(n - 2)(n + 2) + 6(n - 2) = 0

(n - 2)(3n + 6  + 6) = 0

 (n - 2)(3n + 12) = 0

\(\left[{}\begin{matrix}n-2=0\\3n+12=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}n=2\\n=-4\end{matrix}\right.\)

n = - \(4\) (loại)

Vậy n = 2, nên số thứ nhất là 2 

Kết luận: Ba số tự nhiên liên tiếp đó là:   2; 3; 4

 

 

 

 

26 tháng 2 2024

a) \(\left(3x+5\right)^3+\left(2x-7\right)^3-\left(5x-2\right)^3=0\)

\(\Leftrightarrow\left[\left(3x+5\right)+\left(2x-7\right)\right]\left[\left(3x+5\right)^2-\left(3x+5\right)\left(2x-7\right)+\left(2x-7\right)^2\right]-\left(5x-2\right)^3=0\)

\(\Leftrightarrow\left(5x-2\right)\left[9x^2+30x+25-\left(6x^2-21x+10x-35\right)+4x^2-28x+49\right]-\left(5x-2\right)^3=0\)

\(\Leftrightarrow\left(5x-2\right)\left(7x^2+13x+109\right)-\left(5x-2\right)^3=0\)

\(\Leftrightarrow\left(5x-2\right)\left[7x^2+13x+109-\left(5x-2\right)^2\right]=0\)

\(\Leftrightarrow\left(5x-2\right)\left(7x^2+13x+109-25x^2+20x-4\right)=0\)

\(\Leftrightarrow\left(5x-2\right)\left(-18x^2+33x+105\right)=0\)

\(\Leftrightarrow-3\left(5x-2\right)\left(6x^2-11x-35\right)=0\)

\(\Leftrightarrow-3\left(5x-2\right)\left(6x^2+10x-21x-35\right)=0\)

\(\Leftrightarrow-3\left(5x-2\right)\left[2x\left(3x+5\right)-7\left(3x+5\right)\right]=0\) 

\(\Leftrightarrow-3\left(5x-2\right)\left(2x-7\right)\left(3x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-2=0\\2x-7=0\\3x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=\dfrac{7}{2}\\x=-\dfrac{5}{3}\end{matrix}\right.\)

a: Đặt \(3x+5=a;2x-7=b\)

=>a+b=3x+5+2x-7=5x-2

Phương trình ban đầu sẽ trở thành:

\(a^3+b^3-\left(a+b\right)^3=0\)

=>\(\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^3=0\)

=>-3ab(a+b)=0

=>ab(a+b)=0

=>(3x+5)(2x-7)(5x-2)=0

=>\(\left[{}\begin{matrix}3x+5=0\\2x-7=0\\5x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=\dfrac{7}{2}\\x=\dfrac{2}{5}\end{matrix}\right.\)

b: \(\left(x^2+x-2\right)^3+\left(x^2+5x+6\right)^3-8\left(x^2+3x+2\right)^3=0\)

=>\(\left(x^2+x-2\right)^3+\left(x^2+5x+6\right)^3-\left(2x^2+6x+4\right)^3=0\)(2)

Đặt \(x^2+x-2=c;x^2+5x+6=d\)

=>\(c+d=2x^2+6x+4\)

Phương trình (2) sẽ trở thành:

\(c^3+d^3-\left(c+d\right)^3=0\)

=>\(\left(c+d\right)^3-3cd\left(c+d\right)-\left(c+d\right)^3=0\)

=>-3cd(c+d)=0

=>cd(c+d)=0

=>\(\left(x^2+x-2\right)\left(x^2+5x+6\right)\left(2x^2+6x+4\right)=0\)

=>\(\left(x+2\right)\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+2\right)\left(x+1\right)=0\)

=>\(\left(x+2\right)^3\cdot\left(x-1\right)\left(x+1\right)\left(x+3\right)=0\)

=>\(\left[{}\begin{matrix}x=-2\\x=1\\x=-1\\x=-3\end{matrix}\right.\)

25 tháng 2 2024

Increase là "tăng"

1 like nha

25 tháng 2 2024

Tăng