Tìm các giá trị nguyên của x nghiệm đúng cả hai bất phuong trình:
\(\dfrac{2x+1}{6}-\dfrac{x-2}{9}9>x-3\) \(x-\dfrac{x-3}{4}\ge x-\dfrac{x-3}{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+3\right)^2-x\left(x-1\right)=2\)
\(\Leftrightarrow x^2+6x+9-x^2+x=2\)
\(\Leftrightarrow7x+9=2\)
\(\Leftrightarrow7x=2-9\)
\(\Leftrightarrow7x=-7\)
\(\Leftrightarrow x=\dfrac{-7}{7}=-1\)
b) \(\left(2x+3\right)^2-\left(x+1\right)\left(4x-3\right)=-1\)
\(\Leftrightarrow4x^2+12x+9-\left(4x^2-3x+4x-3\right)=-1\)
\(\Leftrightarrow4x^2+12x+9-4x^2+3x-4x+3=-1\)
\(\Leftrightarrow11x+12=-1\)
\(\Leftrightarrow11x=-13\)
\(\Leftrightarrow x=\dfrac{-13}{11}\)
Đặt x2 + 3x + 3 = a ; x2 - x - 1 = b ; -2x2 - 2x - 1 = c ; -1 = d
Ta nhận thấy a3 + b3 + c3 + d3 = 0 (1)
và a + b + c + d = 0
Khi đó ta có (1) <=> (a + b)3 + (c + d)3 - 3ab(a + b) - 3cd(c + d) = 0
<=> ab(a + b) + cd(c + d) = 0
<=> (a + b)(ab - cd) = 0
<=> \(\left[{}\begin{matrix}a=-b\\ab=cd\end{matrix}\right.\)
Với a = -b ta được x2 + 3x + 3 = -x2 + x + 1
<=> x2 + x + 1 = 0
<=> \(\left(x+\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\)
=> Phương trình vô nghiệm
Với ab = cd
\(\Leftrightarrow\left(x^2+3x+3\right).\left(x^2-x-1\right)=2x^2+2x+1\)
\(\Leftrightarrow\) \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow\left(x^4+2x^3+x^2\right)-\left(4x^2+8x+4\right)=0\)
\(\Leftrightarrow\left(x^2+x\right)^2-\left(2x+2\right)^2=0\)
\(\Leftrightarrow\left(x^2+3x+2\right).\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2.\left(x-2\right).\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)
Lời giải:
$(3x+4)^2=(3x)^2+2.3x.4+4^2=9x^2+24x+16$
P.s: Lần sau bạn chú ý ghi đầy đủ cả yêu cầu đề.
\(\text{∘}\) \(\text{Ans}\)
\(\downarrow\)
\(14x^2y^3-7xy^2\cdot\left(2x-3y\right)\)
`=`\(14x^2y^3-\left[7xy^2\cdot2x+7xy^2\cdot\left(-3y\right)\right]\)
`=`\(14x^2y^3-\left(14x^2y^2-21xy^3\right)\)
`=`\(14x^2y^3-14x^2y^2+21xy^3\)
\(\text{∘}\) \(\text{Kaizuu lv uuu.}\)
\(a,\left(4x-1\right)\left(x^2+12\right)\left(-x+4\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-1>0\\x^2+12>0\left(LD\forall x\right)\\-x+4>0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x>1\\-x>-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{1}{4}\\x< 4\end{matrix}\right.\)
Vậy \(S=\left\{x|\dfrac{1}{4}< x< 4\right\}\)
\(b,\left(2x-1\right)\left(5-2x\right)\left(1-x\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1< 0\\5-2x< 0\\1-x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{1}{2}\\x>\dfrac{5}{2}\\x< 1\end{matrix}\right.\)
Vậy \(S=\left\{x|1>x>\dfrac{5}{2}\right\}\)
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+2^2\geq 4x$
$y^2+2^2\geq 4y$
$2(x^2+y^2)\geq 4xy$
$\Rightarrow 3(x^2+y^2)+8\geq 4(x+y+xy)=32$
$\Rightarrow x^2+y^2\geq 8$
Vậy $P_{\min}=8$ khi $x=y=2$
Lời giải:
$(\sqrt{2}x+\sqrt{8}y)^2=(\sqrt{2}x)^2+(\sqrt{8}y)^2+2\sqrt{2}x.\sqrt{8}y$
$=2x^2+8y^2+8xy$
Lời giải:
Gọi biểu thức trên là $A$
$4A=4a^2+4ab+4b^2-12a-12b+8064$
$=(4a^2+4ab+b^2)+3b^2-12a-12b+8064$
$=(2a+b)^2-6(2a+b)+(3b^2-6b)+8064$
$=(2a+b)^2-6(2a+b)+9+3(b^2-2b+1)+8052$
$=(2a+b-3)^2+3(b-1)^2+8052\geq 8052$
$\Rightarrow A\geq 2013$
Vậy $A_{\min}=2013$
1) dư số 9 trước dấu lớn và cái (2) mình xin sửa đề là \(\ge3\).. mới làm được ấy: )
1)
`=>3(2x+1)-2(x-2)>18(x-3)`
`<=>6x+3-2x+4>18x-54`
`<=>-14x>-61`
`=>x<61/14`
2)
`=>12x-3(x-3)>=36-(x-3)`
`<=>12x-3x+9>=36-x+3`
`<=>10x>=30`
`<=>x>=3`
`=> T:3<=x<61/14`
Mà x là các giá trị nguyên nên x thuộc {3; 4}