Chứng minh rằng
\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
với\(\forall a,b,c\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(F'_x=\frac{1}{\pi\left(1+x^2\right)}\left(\frac{1}{\pi}arctgy+\frac{1}{2}\right)\) \(\forall x,y\)
\(\Rightarrow F"_{xy}=\frac{1}{\pi\left(1+x^2\right)}.\frac{1}{\pi\left(1+y^2\right)}=\frac{1}{\pi^2\left(1+x^2+y^2+x^2y^2\right)}\)
\(\Rightarrow\)Hàm mật độ của BNN hai chiều (X, Y) là
\(f\left(x,y\right)=\frac{1}{\pi^2\left(1+x^2+y^2+x^2y^2\right)}\)
Gọi p là tỉ lệ phế phẩm của kho hàng, với độ tin cậy \(\gamma\), khoảng tin cậy của p có dạng :
\(f_n-\frac{\sqrt{f_n\left(1-f_n\right)}}{\sqrt{n}}\Phi^{-1}\left(\frac{\gamma}{2}\right)< p< f_n+\frac{\sqrt{f_n\left(1-f_n\right)}}{\sqrt{n}}\Phi^{-1}\left(\frac{\gamma}{2}\right)\)(*)
Theo đề bài ta có: n= 400 \(\Rightarrow\sqrt{n}=20\)
\(f_n=\frac{20}{400}=0,05\); \(\gamma=0,95\Rightarrow\Phi^{-1}\left(\frac{\gamma}{2}\right)=\Phi^{-1}\left(0,475\right)=1,96\)
(*)\(\Leftrightarrow0,05-\frac{\sqrt{0,05.0,95}}{20}.1,96< p< 0,05+\frac{\sqrt{0,05.0,95}}{20}.1,96\)
\(\Leftrightarrow0,05-0,02< p< 0,05+0,02\)
\(\Leftrightarrow0,03< p< 0,07\)
Vậy khoảng tin cậy của tỉ lệ phế phẩm của kho hàng là : 0,03 < p < 0 ,07
\(\sqrt{2x+1}+\sqrt{7-2x}-2\sqrt{\left(2x+1\right)\left(7-2x\right)}+4=0\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{7-2x}\right)^2=-4\)
vô lý
Hoàng Nguyễn Văn bạn có chút nhầm lẫn gì rồi, có dấu căn ở đây nên k đưa vào hằng đẳng thức được
\(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\)
Bài giải :
\(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\)
\(\left(\sqrt{x}+\sqrt{9-x}\right)^2=\left(\sqrt{-x^2+9x+9}\right)^2\)
\(x+9-x=-x^2+9x+9\)
Rồi bạn cứ làm theo bình thường là được!
ĐK: \(\hept{\begin{cases}x\ge0\\9-x\ge0\\-x^2+9x+9\ge0\end{cases}}\) ( ps: Không nhất thiết phải giải điều kiện ra đâu em nhé! Nếu giải đc thì càng tốt :))
pt <=> \(\left(\sqrt{x}+\sqrt{9-x}\right)^2=-x^2+9x+9\)
<=> \(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)
<=> \(2\sqrt{9x-x^2}=9x-x^2\)
Đặt: \(\sqrt{9x-x^2}=t\ge0\)
Ta có phương trình ẩn t: \(2t=t^2\Leftrightarrow\orbr{\begin{cases}t=0\\t=2\end{cases}}\)
+) Với t = 0, ta có: \(\sqrt{9x-x^2}=0\Leftrightarrow9x-x^2=0\Leftrightarrow\orbr{\begin{cases}x=0\left(tmdk\right)\\x=9\left(tmdk\right)\end{cases}}\)
+) Với t = 2, ta có: Tự làm nhé!
Áp dụng hệ quả BĐT Cauchy cho 2 số thực dương ta có
(ab)^2 +(bc)^2 >=2 ab.bc
(bc)^2+(ca)^2 >= 2bc.ca
(ca)^2+(ab)^2 >= 2ca.ab
=> 2(a^2b^2+b^2c^2+c^2a^2)>=2abc(a+b+c)
<=> a^2b^2+b^2c^2+c^2a^2 >= abc(a+b+c)
Dấu = xảy ra <=> ab=bc=ca <=>a=b=c
Áp dụng bất đẳng thức cosi cho lần lượt 3 số không âm là a,b,c ta có :
\(a^2b^2+b^2c^2\ge2b^2ac\)
\(b^2c^2+c^2a^2\ge2c^2ab\)
\(a^2b^2+c^2a^2\ge2a^2bc\)
Cộng lần lượt 3 vế của các bđt trên ta có :
\(2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2abc\left(a+b+c\right)\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\)
ĐPCM
Dấu "=" khi a=b=c