K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

Áp dụng hệ quả BĐT Cauchy cho 2 số thực dương ta có

(ab)^2 +(bc)^2 >=2 ab.bc

(bc)^2+(ca)^2 >= 2bc.ca

(ca)^2+(ab)^2 >= 2ca.ab

=> 2(a^2b^2+b^2c^2+c^2a^2)>=2abc(a+b+c)

<=>  a^2b^2+b^2c^2+c^2a^2 >= abc(a+b+c)

Dấu = xảy ra <=> ab=bc=ca <=>a=b=c

30 tháng 11 2019

Áp dụng bất đẳng thức cosi cho lần lượt 3 số không âm là a,b,c ta có :

\(a^2b^2+b^2c^2\ge2b^2ac\)

\(b^2c^2+c^2a^2\ge2c^2ab\)

\(a^2b^2+c^2a^2\ge2a^2bc\)

Cộng lần lượt 3 vế của các bđt trên ta có :

\(2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\)

ĐPCM

Dấu "=" khi a=b=c

30 tháng 11 2019

Ta có: \(F'_x=\frac{1}{\pi\left(1+x^2\right)}\left(\frac{1}{\pi}arctgy+\frac{1}{2}\right)\)                        \(\forall x,y\)

\(\Rightarrow F"_{xy}=\frac{1}{\pi\left(1+x^2\right)}.\frac{1}{\pi\left(1+y^2\right)}=\frac{1}{\pi^2\left(1+x^2+y^2+x^2y^2\right)}\)

\(\Rightarrow\)Hàm mật độ của BNN hai chiều (X, Y) là

                 \(f\left(x,y\right)=\frac{1}{\pi^2\left(1+x^2+y^2+x^2y^2\right)}\)

1 + 1 = 2 

mình 2k8

30 tháng 11 2019

mk 2k7

30 tháng 11 2019

Gọi p là tỉ lệ phế phẩm của kho hàng, với độ tin cậy \(\gamma\), khoảng tin cậy của p có dạng :

\(f_n-\frac{\sqrt{f_n\left(1-f_n\right)}}{\sqrt{n}}\Phi^{-1}\left(\frac{\gamma}{2}\right)< p< f_n+\frac{\sqrt{f_n\left(1-f_n\right)}}{\sqrt{n}}\Phi^{-1}\left(\frac{\gamma}{2}\right)\)(*)

Theo đề bài ta có: n= 400 \(\Rightarrow\sqrt{n}=20\)

              \(f_n=\frac{20}{400}=0,05\)\(\gamma=0,95\Rightarrow\Phi^{-1}\left(\frac{\gamma}{2}\right)=\Phi^{-1}\left(0,475\right)=1,96\)

(*)\(\Leftrightarrow0,05-\frac{\sqrt{0,05.0,95}}{20}.1,96< p< 0,05+\frac{\sqrt{0,05.0,95}}{20}.1,96\)

\(\Leftrightarrow0,05-0,02< p< 0,05+0,02\)

\(\Leftrightarrow0,03< p< 0,07\)

Vậy khoảng tin cậy của tỉ lệ phế phẩm của kho hàng là : 0,03 < p < 0 ,07

30 tháng 11 2019

thanks nha!!!!

30 tháng 11 2019

\(\sqrt{2x+1}+\sqrt{7-2x}-2\sqrt{\left(2x+1\right)\left(7-2x\right)}+4=0\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{7-2x}\right)^2=-4\)

vô lý

30 tháng 11 2019

Hoàng Nguyễn Văn bạn có chút nhầm lẫn gì rồi, có dấu căn ở đây nên k đưa vào hằng đẳng thức được

30 tháng 11 2019

X.VIDEO.COM;XNXX;69netviet vân vân..

\(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\)

Bài giải : 

\(\sqrt{x}+\sqrt{9-x}=\sqrt{-x^2+9x+9}\)

\(\left(\sqrt{x}+\sqrt{9-x}\right)^2=\left(\sqrt{-x^2+9x+9}\right)^2\)

\(x+9-x=-x^2+9x+9\)

Rồi bạn cứ làm theo bình thường là được!

30 tháng 11 2019

ĐK: \(\hept{\begin{cases}x\ge0\\9-x\ge0\\-x^2+9x+9\ge0\end{cases}}\) ( ps: Không nhất thiết phải giải điều kiện ra đâu em nhé! Nếu giải đc thì càng tốt :))

pt <=> \(\left(\sqrt{x}+\sqrt{9-x}\right)^2=-x^2+9x+9\)

<=> \(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)

<=> \(2\sqrt{9x-x^2}=9x-x^2\)

Đặt: \(\sqrt{9x-x^2}=t\ge0\)

Ta có phương trình ẩn t: \(2t=t^2\Leftrightarrow\orbr{\begin{cases}t=0\\t=2\end{cases}}\)

+) Với t = 0, ta có: \(\sqrt{9x-x^2}=0\Leftrightarrow9x-x^2=0\Leftrightarrow\orbr{\begin{cases}x=0\left(tmdk\right)\\x=9\left(tmdk\right)\end{cases}}\)

+) Với t = 2, ta có: Tự làm nhé!