K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2022

\(\dfrac{1}{a}\)\(\sqrt{a+1}\) 

22 tháng 7 2022

Trước tiên dễ dàng tính được \(\widehat{B}=58^o\)

Tam giác ABC vuông tại A nên \(\left\{{}\begin{matrix}AB=AC.tgC\\S_{ABC}=\dfrac{1}{2}AB.AC\end{matrix}\right.\)

Mà \(\widehat{C}=32^o;S_{ABC}=80cm^2\) nên ta có \(\left\{{}\begin{matrix}AB=AC.tg32^o\\\dfrac{1}{2}AB.AC=80\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=AC.tg32^o\\AB.AC=160\end{matrix}\right.\)

Từ 2 điều này, ta có \(AC.tg32^o.AC=160\Leftrightarrow AC^2=\dfrac{160}{tg32^o}\Leftrightarrow AC=\sqrt{\dfrac{160}{tg32^o}}\) \(\approx16\left(cm\right)\) 

Từ đó ta có \(AB=\dfrac{160}{AC}=\dfrac{160}{\sqrt{\dfrac{160}{tg32^o}}}\approx10\left(cm\right)\)

Cuối cùng, ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{160}{\sqrt{\dfrac{160}{tg32^o}}}\right)^2+\left(\sqrt{\dfrac{160}{tg32^o}}\right)^2}\) \(\approx18,869\left(cm\right)\)

 

 

21 tháng 7 2022

Áp dụng định lí pytago trong tam giác vuông ABC tại A , ta có :

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow5^2+AC^2=13^2\)

\(\Leftrightarrow AC^2=13^2-5^2\)

\(\Leftrightarrow AC=\sqrt{144}=12\left(cm\right)\)

+) Xét tam giác ABC vuông tại A , đường cao AH: 

\(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\\AH^2=CH.BH\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5^2=BH.13\\12^2=CH.13\\AH^2=BH.CH\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\\CH=\dfrac{144}{13}\\AH=\sqrt{\dfrac{25}{13}.\dfrac{144}{13}}=\dfrac{60}{13}\end{matrix}\right.\)

21 tháng 7 2022

ĐK: \(x^2-4x+4\ge0\Leftrightarrow\left(x-2\right)^2\ge0\) (luôn đúng)

\(\sqrt{x^2-4x+4}=x+2\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=x+2\\ \Leftrightarrow\left|x-2\right|=x+2\)

TH1: \(x-2\ge0\Leftrightarrow x\ge2\)

PT trở thành: \(x-2=x+2\Leftrightarrow-2=2\) (vô lí)

TH2: \(x-2< 0\Leftrightarrow x< 2\)

PT trở thành: \(2-x=x+2\Leftrightarrow2x=0\Leftrightarrow x=0\) (TM)

Vậy PT có nghiệm \(x=0\)

21 tháng 7 2022

\(\sqrt{x^2-4x+4}=x+2\)        \(ĐK: x \ge -2\)

\(<=>\sqrt{(x-2)^2}=x+2\)

`<=>|x-2|=x+2`

`@` Với `x-2 >= 0<=>x >= 2=>|x-2|=x-2` ptr có dạng:

       `x-2=x+2`

`<=>0x=4` (Vô lí)

 `@` Với `x-2 < 0<=>x < 2` Kết hợp đk \(=>-2 \le x < 2=>|x-2|=2-x` ptr có dạng:

      `2-x=x+2`

`<=>2x=0`

`<=>x=0` (t/m)

Vậy `S=`{`0`}

21 tháng 7 2022

Bài 6 ;mk ko chép lại đề bài nữa nhé

1, p=[1-\(\dfrac{4}{\sqrt{x}+1}+\dfrac{1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)]:\(\dfrac{x-2\sqrt{x}}{x-1}\)

=\(\left[\dfrac{x-1-4\left(\sqrt{x}-1\right)+1}{x-1}\right]:\dfrac{x-2\sqrt{x}}{x-1}\)

=\(\left[\dfrac{x-1-4\sqrt{x}+4+1}{x-1}\right]:\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-1}\)

=\(\dfrac{\left(\sqrt{x}-2\right)^2}{x-1}\times\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

b, p=\(\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{2}\)

\(\Leftrightarrow\sqrt{x}=4\)

\(\Leftrightarrow x=16\)