xin bài hình chuyên lớp 9 siêu khó ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tứ giác BNMC có:
\(\widehat{BNC}=\widehat{BMC}=90^0\) (do BM và CN là hai đường cao của \(\Delta ABC\))
\(\Rightarrow M,N\) cùng nhìn BC dưới một góc \(90^0\)
\(\Rightarrow BNMC\) nội tiếp
*) Gọi \(I\) là trung điểm của BC
\(\Delta BMC\) vuông tại M, có MI là đường trung tuyến ứng với cạnh huyền BC
\(\Rightarrow IM=IB=IC=\dfrac{BC}{2}\) (1)
\(\Delta BNC\) vuông tại N, có NI là đường trung tuyến ứng với cạnh huyền BC
\(\Rightarrow IN=IB=IC=\dfrac{BC}{2}\) (2)
Từ (1) và (2) \(\Rightarrow IM=IN=IB=IC=\dfrac{BC}{2}\)
Vậy \(I\) là tâm của đường tròn ngoại tiếp tứ giác BNMC
b) Do BNMC là tứ giác nội tiếp (cmt)
\(\Rightarrow\widehat{AMN}=\widehat{ABC}\) (góc ngoài tại đỉnh M bằng góc trong tại đỉnh B của tứ giác BNMC)
Xét \(\Delta AMN\) và \(\Delta ABC\) có:
\(\widehat{A}\) chung
\(\widehat{AMN}=\widehat{ABC}\) (cmt)
\(\Delta AMN\) ∽ \(\Delta ABC\) (g-g)
a: Xét tứ giác BNMC có \(\widehat{BNC}=\widehat{BMC}=90^0\)
nên BNMC là tứ giác nội tiếp đường tròn đường kính BC
tâm I là trung điểm của BC
b: Ta có: BNMC là tứ giác nội tiếp
=>\(\widehat{BNM}+\widehat{BCM}=180^0\)
mà \(\widehat{BNM}+\widehat{ANM}=180^0\)(hai góc kề bù)
nên \(\widehat{ANM}=\widehat{ACB}\)
Xét ΔANM và ΔACB có
\(\widehat{ANM}=\widehat{ACB}\)
\(\widehat{NAM}\) chung
Do đó: ΔANM~ΔACB
Gọi số dụng cụ mỗi ngày phải làm là x(dụng cụ), gọi số ngày phải hoàn thành là y(ngày)
(Điều kiện: \(x\in Z^+;y>0\))
Người thứ nhất làm vượt mức mỗi ngày 3 dụng cụ nên làm xong công việc sớm 2 ngày nên ta có:
(x+3)(y-2)=xy
=>xy-2x+3y-6=xy
=>-2x+3y=6(1)
Người thứ hai làm kém định mức mỗi ngày 3 dụng cụ nên hoàn thành lâu hơn 3 ngày nên ta có:
(x-3)(y+3)=xy
=>xy+3x-3y-9=xy
=>3x-3y=9
=>x-y=3(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}-2x+3y=6\\x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x+3y=6\\2x-2y=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x+3y+2x-2y=6+6\\x-y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=12\\x=y+3=15\end{matrix}\right.\left(nhận\right)\)
Số dụng cụ được giao là 12*15=180(dụng cụ)
a: Xét \(\left(\dfrac{MC}{2}\right)\) có
ΔCDM nội tiếp
CM là đường kính
Do đó: ΔCDM vuông tại D
=>BD\(\perp\)DC tại D
Xét tứ giác ABCD có \(\widehat{CDB}=\widehat{CAB}=90^0\)
nên ABCD là tứ giác nội tiếp
b: ta có: ABCD là tứ giác nội tiếp
=>\(\widehat{ABD}=\widehat{ACD}\)
1: Ta có: ΔOCD cân tại O
mà OK là đường trung tuyến
nên OK\(\perp\)CD
Xét tứ giác OKMB có \(\widehat{OKM}+\widehat{OBM}=90^0+90^0=180^0\)
nên OKMB là tứ giác nội tiếp
2: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại H và H là trung điểm của AB
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2\)
=>\(OH\cdot OM=R^2\left(3\right)\)
Xét ΔOHN vuông tại H và ΔOKM vuông tại K có
\(\widehat{HON}\) chung
Do đó: ΔOHN~ΔOKM
=>\(\dfrac{OH}{OK}=\dfrac{ON}{OM}\)
=>\(OK\cdot ON=OH\cdot OM\left(4\right)\)
Từ (3) và (4) suy ra \(OK\cdot ON=R^2\)
=>\(OK\cdot ON=OC^2\)
=>\(\dfrac{OK}{OC}=\dfrac{OC}{ON}\)
Xét ΔOKC và ΔOCN có
\(\dfrac{OK}{OC}=\dfrac{OC}{ON}\)
\(\widehat{KOC}\) chung
Do đó: ΔOKC~ΔOCN
=>\(\widehat{OCN}=\widehat{OKC}\)
=>\(\widehat{OCN}=90^0\)
=>NC là tiếp tuyến của (O)
Xét (O) có
\(\widehat{BAM}\) là góc nội tiếp chắn cung BM
\(\widehat{CAM}\) là góc nội tiếp chắn cung CM
\(\widehat{BAM}=\widehat{CAM}\)
Do đó: \(sđ\stackrel\frown{BM}=sđ\stackrel\frown{CM}\)
=>BM=CM
=>M nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OM là đường trung trực của BC
=>OM đi qua trung điểm của BC
Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2=x\)
=>\(\dfrac{1}{2}x^2-x=0\)
=>\(x\left(\dfrac{1}{2}x-1\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Thay x=0 vào y=x, ta được:
y=x=0
Thay x=2 vào y=x, ta được:
y=x=2
Vậy: Tọa độ giao điểm là O(0;0); A(2;0)
Bài 6:
Gọi số học sinh của lớp 9A và lớp 9B lần lượt là a(bạn),b(bạn)
(Điều kiện: \(a,b\in Z^+\))
Tổng số học sinh là 105 nên a+b=105(1)
Số cây lớp 9A trồng được là 4a(cây)
Số cây lớp 9B trồng được là 5b(cây)
Tổng số cây hai lớp trồng được là 472 cây nên 4a+5b=472(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=105\\4a+5b=472\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4a+4b=420\\4a+5b=472\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-b=-52\\a+b=105\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b=52\\a=105-52=53\end{matrix}\right.\left(nhận\right)\)
Vậy: số học sinh của lớp 9A và lớp 9B lần lượt là 53 bạn và 52 bạn
Bài 5:
Gọi số học sinh của lớp 9B và lớp 9C lần lượt là a(bạn),b(bạn)
(Điều kiện: \(a,b\in Z^+\))
Tổng số học sinh là 78 nên a+b=78(3)
Số cây lớp 9B trồng được là 3a(cây)
Số cây lớp 9C trồng được là 4b(cây)
Tổng số cây hai lớp trồng được là 274 cây nên 3a+4b=274(4)
Từ (3) và (4) ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+4b=274\\a+b=78\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3a+4b=274\\3a+3b=234\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=40\\a=78-b=78-40=38\end{matrix}\right.\left(nhận\right)\)
Vậy: số học sinh của lớp 9B và lớp 9C lần lượt là 38 bạn và 40 bạn
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R) có 2 đường cao BE và CF cắt nhau tại H, AH cắt (O) tại K. Gọi I là trung điểm cạnh AH. Lấy điểm M thuộc cạnh KC, điểm N thuộc cạnh ME sao cho HM // BK và HN // BC. Gọi P và Q lần lượt là trung điểm các cạnh NI và NK, PE cắt MQ tại L. Đường thẳng qua L song song với AK cắt BK và SI lần lượt tại S và T. Chứng minh : Nếu $\tan B \cdot \tan C = 3$ thì L là trung điểm cạnh ST (B,C là góc tam giác ABC).