Giải pt:
\(\sqrt{x^2+10x+21}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
\(4\left(x+1\right)^2=\left(2x+10\right)\left(1-\sqrt{3+2x}\right)^2\)
\(\frac{1}{1-\sqrt{1-x}}-\frac{1}{1+\sqrt{1-x}}=\frac{\sqrt{3}}{x}\)
\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
a) ĐKXĐ: x\(\ge\)-3
PT\(\Leftrightarrow\sqrt{\left(x+7\right)\left(x+3\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
Đặt \(\left(\sqrt{x+3},\sqrt{x+7}\right)=\left(a,b\right)\) \(\left(a,b\ge0\right)\)
PT\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=2\\b=3\end{cases}}\)(TM ĐK)
TH 1: a=2\(\Leftrightarrow\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)(tm)
TH 2: b=3\(\Leftrightarrow\sqrt{x+7}=3\Leftrightarrow x+7=9\Leftrightarrow x=2\)(tm)
Vậy tập nghiệm phương trình S={1; 2}