khối lượng dung dịch sau pư đc tính = ct nào vậy
(hóa 9 nha )
help me
#ookami#
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dự đoán điểm rơi tại x = y = 2/3 ta sẽ làm như sau
\(A=x+y+\frac{1}{x}+\frac{1}{y}\)
\(=\left(\frac{9x}{4}+\frac{1}{x}\right)+\left(\frac{9y}{4}+\frac{1}{y}\right)-\frac{5}{4}\left(x+y\right)\)
\(\ge2\sqrt{\frac{9x}{4x}}+2\sqrt{\frac{9y}{4y}}-\frac{5}{4}.\frac{4}{3}=\frac{13}{3}\)
Dấu "=" tại x = y = 2/3
Cách khác là UCT (không hay như cách kia đâu=)
Ta sẽ chứng minh: \(x+\frac{1}{x}\ge-\frac{5}{4}x+3\)
\(\Leftrightarrow\frac{\left(3x-2\right)^2}{4x}\ge0\) (đúng)
Thiết lập tương tự BĐT còn lại và cộng theo vế ta được: \(VT\ge-\frac{5}{4}\left(x+y\right)+6\ge-\frac{5}{4}.\frac{4}{3}+6=\frac{13}{3}\)
Dấu "=" xảy ra khi 3x - 2 = 3y - 2 = 0 tức là x = y = 2/3
\(a,\Delta=m^2-4m+4=\left(m-2\right)^2\ge0\forall m\)
Nên pt đã cho luôn có 2 nghiệm phân biệt với mọi m
b, Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)
Ta có \(B=\frac{2x_1x_2+3}{x_1^2+x_2^2+2\left(1+x_1x_2\right)}=1\)
\(\Leftrightarrow\frac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=1\)
\(\Leftrightarrow\frac{2\left(m-1\right)+3}{m^2+2}=1\)
\(\Leftrightarrow\frac{2m+1}{m^2+2}=1\)
\(\Leftrightarrow2m+1=m^2+2\)
\(\Leftrightarrow m^2-2m+1=0\)
\(\Leftrightarrow\left(m-1\right)^2=0\)
\(\Leftrightarrow m=1\)
1) a) \(\hept{\begin{cases}2x-y=5\\x+y=4\end{cases}}\)<=> \(\hept{\begin{cases}3x=9\\x+y=4\end{cases}}\)<=>\(\hept{\begin{cases}x=3\\3+y=4\end{cases}}\)<=> \(\hept{\begin{cases}x=3\\y=1\end{cases}}\)
\(16x^5-8x^3+x=0\)(1) <=> \(x\left(16x^4-8x^2+1\right)=0\)
<=> \(x_1=0\)hoac \(16x^4-8x^2+1=0\)
\(16x^4-8x^2+1=0\)
Dat \(x^2=t\left(t\ge0\right)\)phuong trinh tro thanh
\(16x^2-8x+1=0\)
\(\left(a=16;b'=\frac{b}{2}=-\frac{8}{2}=-4:c=1\right)\)
\(\Delta'=b'^2-ac=\left(-4\right)^2-16\cdot1=16-16=0\)
Phuong trinh co nghiem kep t1 =t2=\(-\frac{b'}{a}=-\frac{-4}{1}=4\)(thoa)
Voi t=4 ta duoc
\(x^2=4\)<=> \(x_2=2,x_3=-2\)
Vay nghiem cua phuong trinh (1) la \(x_1=0,x_2=2,x_3=-2\)
\(2=\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)\(\Leftrightarrow\)\(\frac{2}{\sqrt{ab}}\le2\)\(\Leftrightarrow\)\(\frac{1}{ab}\le1\)
\(Q=\frac{1}{4}\left(\frac{4}{\left(a^2+b\right)^2}+\frac{4}{\left(a+b^2\right)^2}\right)\le\frac{1}{4}\left(\frac{1}{a^2b}+\frac{1}{ab^2}\right)=\frac{1}{4ab}\left(\frac{1}{a}+\frac{1}{b}\right)\le\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=1\)
...
Hằng đẳng thức sai rồi nha Quân eii , nhìn lại cái bậc của ẩn a,b ở 2 mẫu số đi -__
\(m_{dd}=\frac{m_{ct}}{C_{\%}}\times100\)
khối lượng dung dịch thì bằng tổng khối lượng chất tham gia trừ đi khối lượng chất kết tủa và bay hơi nếu có trong dung dịch sau phản ứng.