K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2019

Nhanh lên

11 tháng 10 2019

a) 16x2(x - y)2 - 10y(y - x)3

= 16x2(y - x)2 - 10y(y - x)3

= 2(y - x)2[8x2 - 5y(y - x)]

= 2(y - x)2(8x2 + 5xy - 5y2)

b) a2 -b2 + 4ab - 9 (sai đề)

11 tháng 10 2019

Ta có: B = x2 + 2y2 - 2xy + 2x - 6y + 10

B = (x2 - 2xy + y2) + 2x - 6y + y2 + 10

B = (x - y)2 + 2(x - y) + 1 - 4y + y2 + 4 + 5

B = (x - y + 1)2 + (y - 2)2 + 5 \(\ge\)\(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y-1\\y=2\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy MinB = 5 <=> x = 1 và y = 2

11 tháng 10 2019

Bài 1: Đặt \(f\left(x\right)=\left(x^2+x+1\right)^{10}+\left(x^2-x+1\right)^{10}-2\)

Giả sử  \(f\left(x\right)\)chia hết cho x-1

\(\Rightarrow f\left(x\right)=\left(x-1\right)q\left(x\right)\)

\(\Rightarrow f\left(1\right)=\left(1-1\right)q\left(1\right)\)

               \(=0\)

\(\Leftrightarrow\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=0\)

Mà \(\left(1^2+1+1\right)^{10}+\left(1^2-1+1\right)^{10}-2=59048\)

\(\Rightarrow\)mâu thuẫn 

\(\Rightarrow f\left(x\right)\)không chia hết cho x-1 ( trái với đề bài )

Bài 2:

x^4-x^3-3x^2+ax+b x^2-x-2 x^2-1 x^4-x^3-2x^2 - - -x^2+ax+b -x^2+x+2 - (a-1)x+b-2

Vì \(x^4-x^3-3x^2+ax+b\)chia cho \(x^2-x-2\)dư \(2x-3\)

\(\Rightarrow\left(a-1\right)x+b-2=2x-3\)

Đồng nhất hệ  số 2 vế ta được:

\(\hept{\begin{cases}a-1=2\\b-2=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}a=3\\b=-1\end{cases}}\)

Vậy ...

Bài 3:

Vì \(P\left(x\right)\)chia \(x+3\)dư 1

\(\Rightarrow P\left(x\right)=\left(x+3\right)q\left(x\right)+1\)

\(\Rightarrow q\left(-3\right)=\left(-3+3\right)q\left(-3\right)+1\)

                      \(=1\left(1\right)\)

Vì \(P\left(x\right)\)chia \(x-4\)dư 8

\(\Rightarrow P\left(x\right)=\left(x-4\right)q\left(x\right)+8\)

\(\Rightarrow P\left(4\right)=\left(4-4\right)q\left(4\right)+8\)

                    \(=8\left(2\right)\)

Vì \(P\left(x\right)\)chia cho \(\left(x+3\right)\left(x-4\right)\)được thương là 3x và còn dư

\(\Rightarrow P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+ax+b\left(3\right)\)

Từ (1) , (2) và (3) \(\Rightarrow\hept{\begin{cases}-3a+b=1\\4a+b=8\end{cases}\Leftrightarrow\hept{\begin{cases}-12a+3b=4\\12a+3b=24\end{cases}\Leftrightarrow}\hept{\begin{cases}b=4\\a=1\end{cases}\left(4\right)}}\)

Thay (4) vào (3) ta được:

\(P\left(x\right)=\left(x+3\right)\left(x-4\right)3x+x+4\)

\(\Leftrightarrow P\left(x\right)=3x^3-3x^2-20x+4\)

11 tháng 10 2019

cảm ơn nhé

11 tháng 10 2019

a ) 2a2b2 + 2b2c2 + 2a2c2 - a4 - b4 - c4

= 4a2b- 2a2b2 + 2b2c2 + 2a2c2 - a4 - b4 - c4

= 4a2b2 - ( a4 + 2a2b2 + b4 ) + ( 2b2c + 2a2c2 ) - c4

= 4a2b2 - [ ( a+ b2 ) - 2.c2. ( b2 + a2 ) + c4 ]

= ( 2ab )2 - ( a2 + b2 - c2 )

= ( 2ab - a2 - b2 + c2 )( 2ab + a2 + b2 - c2 )

= [ c- ( a- 2ab + b2 ) ] . [ (a2 + 2ab + b2 ) - c2 ]

= [ c2 - ( a - b )2 ] . [ ( a + b )2 - c2 ]

= ( c - a + b )( c + a - b )( a + b - c )( a + b + c )

b ) x- 10x + 24

= ( x- 10x + 25 ) - 1

= ( x - 5 )2 - 12

= ( x - 5 - 1 )( x - 5 + 1 )

= ( x - 6 )( x - 4 )

11 tháng 10 2019

\(A=x^2-2x+y^2-4y+6\)\(6\)

    \(=x^2-2x+1+y^2-4y+4+1\)

     \(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\)

Do đó GTNN của A là 1 khi và chỉ khi:\(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy ...

11 tháng 10 2019

x^3 - 5 + x - 5^2 = 0

<=> x^3 - 5 + x - 25 = 0

<=> x^3 - 30 + x = 0

<=> (x^2 + 3x + 10)(x - 3) = 0

vì x^2 + 3x + 10 # 0 nên:

<=> x - 3 = 0

<=> x = 3

11 tháng 10 2019

\(3x^2y-6xy^2+3xy\)

\(=3xy\left(x-2y+1\right)\)

\(x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

\(x\left(x-1\right)-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

11 tháng 10 2019

Bài 1 :

 \(3x^2y-6xy^2+3xy\)

\(=3xy\left(x-2y+1\right)\)

11 tháng 10 2019

\(x^2-4+\left(x-2\right)^2\)

\(=\left(x+2\right)\left(x-2\right)+\left(x-2\right)^2\)

\(=2x\left(x-2\right)\)