Cho tam giác có AB=c, BC = a , CA=b ; ma , mb , mc là độ dài trung tuyến vẽ từ A, B, C . Cmr : \(\left(a^2+b^2+c^2\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge2\sqrt{3}\left(m_a+m_b+m_c\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(S=\frac{a-d}{b+d}+\frac{d-b}{c+b}+\frac{b-c}{a+c}+\frac{c-a}{d+a}\)
\(=\left(\frac{a-d}{b+d}+1\right)+\left(\frac{d-b}{c+b}+1\right)+\left(\frac{b-c}{a+c}+1\right)+\left(\frac{c-a}{d+a}+1\right)-4\)
\(=\frac{a+b}{b+d}+\frac{d+c}{c+b}+\frac{b+a}{a+c}+\frac{c+d}{d+a}-4\)
\(=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{c+b}+\frac{1}{d+a}\right)-4\)
\(\ge\frac{4\left(a+b\right)}{a+b+c+d}+\frac{4\left(c+d\right)}{a+b+c+d}-4\) (Cauchy Schwars)
\(=\frac{4\left(a+b+c+d\right)}{a+b+c+d}-4=4-4=0\)
Dấu "=" xảy ra khi: a = b = c = d
Vậy Min(S) = 0 khi a = b = c = d
\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\frac{1}{2-\sqrt{3}}\)
\(=\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\sqrt{5}-2}-\frac{\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=\sqrt{3}-2-\sqrt{2}=-2\)
Phương trình (2) là phương trình đường thẳng \(\Delta:\left(2m+1\right)x+my+m-1=0\)
Phương trình (1) có dạng phương trình đường tròn: \(\left(C\right):x^2+y^2=9\)có tâm là \(O\left(0,0\right)\)và bán kính R=3
Hệ có hai nghiệm \(\left(x_1;y_1\right),\left(x_2;y_2\right)\)\(\Leftrightarrow\)đường thẳng \(\Delta\)cắt \(\left(C\right)\)tại 2 điểm \(M\left(x_1;y_1\right),N\left(x_2;y_2\right)\). Khi đó \(MN=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)\(\Leftrightarrow A=MN^2=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2\)
Biểu thức A đạt GTLN khi \(\Delta\)đi qua tâm O của đường tròn, tức là: \(\Delta:\left(2m+1\right).0+m.0+m-1=0\Leftrightarrow m=1\)
Não đặc-.-
Nếu sửa đề ntn thì mk nghĩ không ngược dấu mới làm được nek
Bài 1: CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) với a,b,c dương
Bài làm:
Ta có: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\ge\frac{a^2+b^2+c^2}{\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}}-\frac{8abc}{2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}}\)
\(=\frac{a^2+b^2+c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}-\frac{8abc}{8abc}\)
\(=1-1=0\)
Dấu "=" xảy ra khi: \(a=b=c\)
Vãi bạn, mình đang đưa các bài tập về các bđt ngược chiều nên đề như thế là đúng r
1.Bơi đến đó , xong rồi cứu được ai trươ thì cứu.Chú ý : phải thêm đúc vua mới đủ 3 người
2.mình thấy cái gì ngon nhất thì cái đó ngon nhất. vận gì cần nhất thì quý nhất
3.không biết
TN1:
\(Na_2CO_3+CaCl_2\rightarrow2NaCl+CaCO_3\downarrow\)
\(n_{Na_2CO_3}=0.1\left(mol\right)\)
\(n_{CaCl_2}=0.015\left(mol\right)\)
\(\Rightarrow\)Tính theo \(n_{CaCl_2}\)\(\Rightarrow n_{CaCO_3}=n_{CaCl_2}=0.015\left(mol\right)\)
\(\Rightarrow m_{\downarrow}=1.5g\)
TN2:
\(Na_2CO_3+BaCl_2\rightarrow2NaCl+BaCO_3\downarrow\)
\(n_{BaCO_3}=\frac{1.5}{137+12+16\cdot3}\)
Đến đây có thể mk sai từ trước đó hoặc bạn nhập sai đề có j bạn kiểm tra lại nhá
a. Đề là \(Q=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\) ?
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}.\frac{a-\sqrt{a^2-b^2}}{b}\)
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{\left(a+\sqrt{a^2-b^2}\right)\left(a-\sqrt{a^2-b^2}\right)}{b\sqrt{a^2-b^2}}\)
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-\left(a^2-b^2\right)}{b\sqrt{a^2-b^2}}\)
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{b^2}{b\sqrt{a^2-b^2}}\)
\(\Leftrightarrow Q=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}\)
\(\Leftrightarrow Q=\frac{a-b}{\sqrt{\left(a-b\right)\left(a+b\right)}}=\sqrt{\frac{a-b}{a+b}}\)
b. Thay a = 3b vào Q, ta được : \(Q=\sqrt{\frac{3b-b}{3b+b}}=\sqrt{\frac{2b}{4b}}=\sqrt{\frac{1}{2}}\)