cho góc xOy nhọn . Kẻ tia Oz là phân giác góc xOy . Trên Ox ; Oy và Oz lần lượt lấy 3 điểm A , B và C sao cho góc ACO = góc BCO . Chứng minh rằng tam giác AOC = tam giác BOC . Trên tia đối tia OC lấy điểm M . Chứng minh tam giác AMC = tam giác BMC . Chứng minh AB vuông góc với OC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{16}{8}=2\)
Do đó:
\(\dfrac{x}{3}=2\Rightarrow x=3.2=6\)
\(\dfrac{y}{5}=2\Rightarrow y=5.2=10\)
Vậy x = 6; y = 10.
b) Ta có: \(x:2=y:\left(-5\right)=\dfrac{x}{2}=\dfrac{y}{-5}\)
Áp dụng TCDTSBN, ta có:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=-\dfrac{7}{7}=-1\)
Do đó:
\(\dfrac{x}{2}=-1\Rightarrow x=2.\left(-1\right)=-2\)
\(\dfrac{y}{-5}=-1\Rightarrow y=\left(-5\right).\left(-1\right)=5\)
Vậy x = -2; y = 5.
Lời giải:
$T = \frac{1}{7^2}+\frac{2}{7^3}+\frac{3}{7^4}+....+\frac{99}{7^{100}}$
$7T = \frac{1}{7}+\frac{2}{7^2}+\frac{3}{7^3}+....+\frac{99}{7^{99}}$
$\Rightarrow 6T=7T-T = \frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}}-\frac{99}{7^{100}}$
$42T = 1+\frac{1}{7}+\frac{1}{7^2}+...+\frac{1}{7^{98}}-\frac{99}{7^{99}}$
$\Rightarrow 42T-6T = 1-\frac{100}{7^{99}}+\frac{99}{7^{100}}$
$\Rightarrow 36T = 1-\frac{601}{7^{100}}< 1$
$\Rightarrow T< \frac{1}{36}$
\(\dfrac{2^{12}.3^5-2^{12}.3^6}{2^{12}.9^3+8^4.3^5}=\dfrac{2^{12}.\left(3^5-3^6\right)}{2^{12}.\left(3^2\right)^3+\left(2^3\right)^4.3^5}\\ =\dfrac{2^{12}.\left(3^5-3^6\right)}{2^{12}.\left(3^6+3^5\right)}=\dfrac{3^5-3^6}{3^6+3^5}\\ =\dfrac{3^5\left(1-3\right)}{3^5\left(1+3\right)}=\dfrac{-2.3^5}{4.3^5}=\dfrac{-2}{4}=-\dfrac{1}{2}\)
Do \(2p+1\) luôn lẻ \(\Rightarrow k^3\) lẻ \(\Rightarrow k\) lẻ \(\Rightarrow k=2n+1\) với n là số tự nhiên
\(\Rightarrow2p+1=\left(2n+1\right)^3\)
\(\Rightarrow2p=\left(2n+1\right)^3-1\)
\(\Rightarrow2p=\left(2n+1-1\right)\left[\left(2n+1\right)^2+2n+1+1\right]\)
\(\Leftrightarrow2p=2n\left(4n^2+6n+3\right)\)
\(\Leftrightarrow p=n\left(4n^2+6n+3\right)\) (1)
Do p nguyên tố \(\Rightarrow p\) chỉ có nhiều nhất 1 ước lớn hơn 1 là chính nó
Do đó (1) thỏa mãn khi và chỉ khi:
\(\left\{{}\begin{matrix}n=1\\p=4n^2+6n+3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=1\\p=13\end{matrix}\right.\)
Vậy \(p=13\) là SNT thỏa mãn yêu cầu
Cho M={0,1,4,9}Hỏi M có bao nhiêu tập hợp con A.16B.15C.14D.13
a) Sửa: \(CMR:MB< MC\)
BH là hình chiếu của AB trên BC
CH là hình chiếu của AC trên BC
Mà: AB < AC \(\Rightarrow BH< CH\)
BH là hình chiếu của BM trên BC
CH là hình chiếu của CM trên BC
Mà: \(BH< CH\Rightarrow MB< MC\)
b) Kẻ DE ⊥ AH
Điểm M là điểm bất kì trên AH nên: \(AM< AH\)
\(\Rightarrow AM-AE< AH-AE\)
\(\Rightarrow ME< HE\)
ME là hình chiếu của MD trên AH
HE là hình chiếu của HD trên AH
Mà: ME < HE \(\Rightarrow MD< HD\)
Câu b đề thiếu rồi em, cần biết quan hệ giữa a và b nữa mới tính được
Bài 4:
a; A = \(\dfrac{4a-5b}{6a+b}\); biết \(\dfrac{a}{b}\) = \(\dfrac{2}{3}\)
\(\dfrac{a}{b}\) = \(\dfrac{2}{3}\) ⇒ a = \(\dfrac{2}{3}\).b
Thay a = \(\dfrac{2}{3}\)b vào biểu thức A ta có:
A = \(\dfrac{4.\dfrac{2}{3}.b-5.b}{6.\dfrac{2}{3}.b+b}\)
A = \(\dfrac{b.\left(\dfrac{8}{3}-5\right)}{b.\left(4+1\right)}\)
A = \(\dfrac{\dfrac{-7}{3}}{5}\)
A = \(\dfrac{-7}{15}\)
Bài 1:
Xét tam giác AMB và tam giác ANB có:
AM = AN
BM = BN
AB chung
⇒ \(\Delta\)AMB = \(\Delta\)ANB (c-c-c) (đpcm)
Bài 2:
Xét tam giác EFG và tam giác EHG có:
GE chung
Góc FEG = Góc HEG
góc FGE = góc EGH
⇒ \(\Delta\)EFG = \(\Delta\)EGH (g- c -g)
Do tam giác MQE vuông tại E \(\Rightarrow\widehat{EMQ}+\widehat{EQM}=90^0\) (1)
Mà \(\widehat{EQM}\) là góc ngoài của tam giác NPQ, theo tính chất góc ngoài của tam giác:
\(\widehat{EQM}=\widehat{ENP}+\widehat{QPN}\) (2)
\(\left(1\right);\left(2\right)\Rightarrow\widehat{EMQ}+\widehat{ENP}+\widehat{QPN}=90^0\)
\(\Rightarrow\widehat{EMQ}+\widehat{ENP}+\widehat{QPN}-90^0=0\)