Cho A = 1+(–3)+5+(–7)+....+17
B = (–2)+4+(–6)+8+.....+(–18)
Tính A + B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6x + x = 511 : 59 + 31
6x + x = 25 + 3
6x + x = 28
<=> 7x = 28
<=> x = 28 : 7
x = 4
Vậy x bằng 4.
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)\)chia hết cho \(3\).
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)\)chia hết cho \(7\).
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)\)chia hết cho \(15\).
Mà \(\left(15,7\right)=1\)nên \(A\)chia hết cho \(7.15=105\).
Với \(p=2\): \(5p+2=12\)không là số nguyên tố.
Với \(p=3\): \(2p+1=7,5p+2=17\)đều là số nguyên tố, thỏa mãn.
Với \(p>3\): khi đó \(p=3k+1\)hoặc \(p=3k+2\)với \(k\inℕ^∗\).
- \(p=3k+1\): \(2p+1=2\left(3k+1\right)+1=6k+3⋮3\)mà \(2p+1>3\)nên không là số nguyên tố.
- \(p=3k+2\): \(5p+2=5\left(3k+2\right)+2=15k+12⋮3\)mà \(5p+2>3\)nên không là số nguên tố.
Vậy \(p=3\).
+ Gọi số tổ chia được là a ( tổ , a ∈ N* )
+ Vì tất cả các bác sĩ đó đều chia đều vào a tổ nên 36 ⋮ a ; 108 ⋮ a => a ∈ ƯC(36 ; 108)
mà a là nhiều nhất nên a ∈ ƯCLN(36 ; 108)
+ Ta có:
36 = 22 . 32
108 = 22 . 33
=> ƯCLN(36 ; 108) = 22 . 32 = 36
+ Vậy chia được nhiều nhất 36 tổ.
Gọi số tổ có thể chia là a
Vì các bác sĩ và y tá được chia đều vào mỗi tổ nên 36 ⋮ a và 108 ⋮ a và a lớn nhất. Do đó, a là ƯCLN (36; 108)
Vì 108 ⋮ 36 nên ƯCLN (36; 108) = 36
help mình pls