K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2020

Xét 32 số có dạng 32,3232,...,3232...3232

Theo nguyên lí Diriclet tồn tại 2 số có cùng số dư khi chia cho số 31

Giả sử 2 số đó là 32...32,32...32( lần lượt có m và n cặp 32, n>m)

Khi đó hiệu 2 số đó chia hết cho 31, tức (32...32).10m( n-m cặp 32 )

Mặt khác (10m,31)=1

Từ đó suy ra số 32...32 (n-m cặp 32) chia hết cho 31

a, \(A=2\left(x-1,5\right)-5=0\)

\(2x-3-5=0\Leftrightarrow2x-8=0\Leftrightarrow2x=8\Leftrightarrow x=4\)

b, \(B=-3x+8+6x-9=0\)

\(3x-1=0\Leftrightarrow3x=1\Leftrightarrow x=\frac{1}{3}\)

c, \(C=6x-18x^3=0\)

\(6x\left(1-3x^2\right)=0\Leftrightarrow\orbr{\begin{cases}6x=0\\1-3x^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\3x^2=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x^2=\frac{1}{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\pm\frac{1}{\sqrt{3}}\end{cases}}}\)