tìm giá trị nhỏ nhất của biểu thức
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-xy+y^2\)
\(\Rightarrow A=x^2-xy+\dfrac{1}{4}y^2-\dfrac{1}{4}y^2+y^2\)
\(\Rightarrow A=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\)
mà \(\left(x-\dfrac{1}{2}y\right)^2\ge0;\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow A=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\) với mọi x,y không đồng thời bằng 0
\(\dfrac{2x}{x-1}+\dfrac{3\left(x+1\right)}{x}=5\left(\text{đ}k\text{x}\text{đ}:x\ne1\right)\\ \Leftrightarrow\dfrac{2x^2}{x\left(x-1\right)}+\dfrac{3\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}=\dfrac{5x\left(x-1\right)}{x\left(x-1\right)}\\ \Rightarrow2x^2+\left(3x+3\right)\left(x-1\right)=5x^2-5x\\ \Leftrightarrow2x^2+3x^2-3x+3x-3=5x^2-5x\\ \Leftrightarrow5x^2-3-5x^2+5x=0\\ \Leftrightarrow5x-3=0\\ \Leftrightarrow5x=3\\ \Leftrightarrow x=\dfrac{3}{5}\)
\(b,\left|1-2x\right|=2x-1\) `(1)`
Nếu `1-2x ≥0<=> 2x≥1<=>x≥`\(\dfrac{1}{2}\) thì biểu thức `(1)` trở thành
`1-2x=2x-1`
`<=> 1+1=2x+2x`
`<=> 2=4x`
`<=> -4x=-2`
`<=>x=` \(\dfrac{-2}{-4}=\dfrac{1}{2}\) ( thoả mãn đk )
Nếu `1-2x <0<=> 2x<1<=>x<`\(\dfrac{1}{2}\) thì biểu thức `(1)` trở thành
`-(1-2x)=2x-1`
`<=>-1+2x=2x-1`
`<=> 2x-2x=-1+1`
`<=>0=0` ( luôn đúng )
`c,`
\(\dfrac{2\left(x+1\right)}{3}-2\ge\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{4\left(x+1\right)}{6}-\dfrac{2}{6}\ge\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow4x+4-2\ge3x-6\\ \Leftrightarrow4x+2\ge3x-6\\ \Leftrightarrow4x-3x\ge-6-2\\ \Leftrightarrow x\ge-8\)
a)\(\dfrac{2x}{x-1}+\dfrac{3\left(x+1\right)}{x}=5\)
\(\dfrac{x\cdot2x}{x\left(x-1\right)}+\dfrac{3\left(x+1\right)\left(x-1\right)}{x\left(x-1\right)}=5\)
\(\dfrac{2x^2}{x^2-x}+\dfrac{3\left(x^2-1^2\right)}{x^2-x}=5\)
\(\dfrac{2x^2}{x^2-x}+\dfrac{3x^2-3}{x^2-x}=5\)
\(\dfrac{2x^2+3x^2-3}{x^2-x}=\dfrac{5x^2-3}{x^2-x}=5\)
\(\Rightarrow5x^2-3=5\left(x^2-x\right)=5x^2-5x\)
\(\Rightarrow3=5x\)
\(x=\dfrac{3}{5}\)
b) \(\left|1-2x\right|=2x-1\)
TH1: \(1>2x\)
\(\Rightarrow\left[{}\begin{matrix}1-2x>0\\2x-1< 0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left|1-2x\right|>0\\2x-1< 0\end{matrix}\right.\) => Vô lí
TH2: \(1\le2x\)
\(\Rightarrow\left[{}\begin{matrix}1-2x\le0\Rightarrow\left|1-2x\right|\ge0\\2x-1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left|1-2x\right|=2x-1\ge0\)
\(\Leftrightarrow2x-1\ge0\Rightarrow2x-1+1=2x\ge0+1=1\)
\(\Leftrightarrow\dfrac{2x}{2}=x\ge\dfrac{1}{2}\)
\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Rightarrow2a^2+2b^2=a^2-2ab+b^2\)
\(\Rightarrow a^2+b^2+2ab=0\)
\(\Rightarrow\left(a+b\right)^2=0\)
\(\Rightarrow a+b=0\Rightarrow a=-b\Rightarrow dpcm\)
\(A=x^2+x+1\)
\(A=x^2+x+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
mà \(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>\dfrac{3}{4}>0\) với mọi x
\(\Rightarrow Dpcm\)
\(\left(x^2-25\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left[x^2-5^2\right]^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left[\left(x+5\right)\left(x-5\right)\right]^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2\left(x-5\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2\left[\left(x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x+5\right)^2\left[\left(x-5\right)+1\right]\left[\left(x-5\right)-1\right]=0\)
\(\Leftrightarrow\left(x+5\right)^2\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=0\\x-4=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x=4\\x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=4\\x=6\end{matrix}\right.\)
Vậy: \(S=\left\{-5;6;4\right\}\)
Ta có ( x2 - 25 )2 - ( x + 5 )2 = 0
Vì ( x2 - 25 )2 ≥ 0 ; ( x + 5 )2 ≥ 0
⇒ ( x2 - 25 )2 - ( x + 5 )2 ≥ 0
Dấu " = " xảy ra khi
\(\left[{}\begin{matrix}\left(x^2-25\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm5\\x=-5\end{matrix}\right.\Rightarrow x=-5\)
Vậy x = 5
\(x^3-4x^2-9x+36=0\)
\(x^2\left(x-4\right)-9\left(x-4\right)=0\)
\(\left(x-4\right)\left(x^2-9\right)=0\)\(\)
\(\Rightarrow x-4=0\) hay \(x^2-9=0\)
\(\Rightarrow x=4\) hay \(x^2=9=3^2\)
\(\Rightarrow x=4\) hay \(x=\pm3\)
⇔x2(x-4) -9(x-4) = 0
⇔(x-4).(x-3).(x+3) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\\x=-3\end{matrix}\right.\)
Lời giải:
$A=(x-1)(x-2)(x-3)(x-4)=[(x-1)(x-4)][(x-2)(x-3)]=(x^2-5x+4)(x^2-5x+6)$
$=a(a+2)$ (đặt $x^2-5x+4=a$)
$=a^2+2a=(a+1)^2-1=(x^2-5x+5)^2-1\geq -1$
Vậy $S_{\min}=-1$. Giá trị này đạt tại $x^2-5x+5=0$
$\Leftrightarrow x=\frac{5\pm \sqrt{5}}{2}$