K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

\(x+y+xy=15\)

\(\Leftrightarrow x+y+xy+1=16\)

\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=16\)

\(\Leftrightarrow\left(y+1\right)\left(x+1\right)=16\)

Áp dụng bất đẳng thức AM-GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\)ta có :

\(\left(y+1\right)\left(x+1\right)\le\frac{\left(x+y+2\right)^2}{4}\)

\(\Leftrightarrow\left(x+y+2\right)^2\ge4\left(x+1\right)\left(y+1\right)=64\)

\(\Leftrightarrow x+y+2\ge8\)

\(\Leftrightarrow x+y\ge6\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng engel :

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{6^2}{2}=18\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=3\)

11 tháng 6 2019

@ Phương @ 

Bất đẳng thức AM-GM là cho hai số không âm.

Ở bài toán này (x+1), (y+1) không phải là hai số không âm . Nếu em muốn áp dụng thì phải nói rõ ra:

"Áp dụng bất đẳng thức:

\(ab\le\frac{\left(a+b\right)^2}{4}\)với mọi a, b"

Cm: \(ab\le\frac{\left(a+b\right)^2}{4}\Leftrightarrow\left(a-b\right)^2\ge0\) đúng với mọi a, b

xy(x-y)2=(x+y)2       ĐK:x>y

(x+y)2=[(x+y)2-4xy]xy

 (x+y)2(xy-1)=4x2y2

\(\frac{1}{\left(x+y\right)^2}=\frac{xy-1}{4x^2y^2}=\frac{1}{4}\left(\frac{1}{xy}-\frac{1}{x^2y^2}\right)\)

\(\frac{1}{\left(x+y\right)^2}=\left[-\left(\frac{1}{xy}-\frac{1}{2}\right)^2+\frac{1}{4}\right]\le\frac{1}{16}\)

=> \(x+y\ge4\)

Dấu "=" xảy ra khi \(x=2+\sqrt{2}\),\(y=2-\sqrt{2}\)

10 tháng 6 2019

Có: \(\frac{1}{ab}+\frac{1}{cd}\ge\frac{4}{ab+cd}=\frac{8}{a^2+b^2+c^2+d^2}.\)

Cần CM: \(\frac{8}{a^2+b^2+c^2+d^2}\ge\frac{a^2+b^2+c^2+d^2}{2}\)

hay: \(\left(a^2+b^2+c^2+d^2\right)^2\ge16\)

\(\Leftrightarrow a^2+b^2+c^2+d^2\ge4\)

CM Bđt phụ sau: \(a^2+b^2+c^2+d^2\ge\frac{\left(a+b+c+d\right)^2}{4}\)

Thật vậy: \(4\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(c-d\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2\ge0\)(đúng)

.................

11 tháng 6 2019

Lê Nhật Khôi cách này lúc đầu em cũng tính làm như nó ngược dấu rồi thì phải:

\(\frac{8}{a^2+b^2+c^2+d^2}\ge\frac{a^2+b^2+c^2+d^2}{2}\)

\(\Leftrightarrow\frac{16}{2\left(a^2+b^2+c^2+d^2\right)}\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(a^2+b^2+c^2+d^2\right)}\)

\(\Leftrightarrow\left(a^2+b^2+c^2+d^2\right)^2\le16\) thế này mới đúng chứ?

_ tth_

10 tháng 6 2019

Đặt \(\hept{\begin{cases}x=a\\2y=b\\3z=c\end{cases}}\left(a;b;c>0\right)\Rightarrow a+b+c=2\)

Khi đó \(S=\Sigma\sqrt{\frac{\frac{ab}{2}}{\frac{ab}{2}+c}}=\Sigma\sqrt{\frac{ab}{ab+2c}}=\Sigma\sqrt{\frac{ab}{ab+\left(a+b+c\right)c}}\)

                                                  \(=\Sigma\sqrt{\frac{ab}{ab+bc+ca+c^2}}=\Sigma\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\)

Áp dụng bđt Cô-si có

\(S\le\frac{\Sigma\left(\frac{a}{a+c}+\frac{b}{b+c}\right)}{2}=\frac{3}{2}\)

10 tháng 6 2019

thank đay là đề thi chuyên toán 

9 tháng 6 2019

a)\(ĐKXĐ:x\ge\frac{-1}{2}\)

 \(\sqrt{x^2+4x+4}=2x+1\)

\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=2x+1\)

\(\Leftrightarrow x+2=2x+1\)

\(\Leftrightarrow-x=-1\)

\(\Leftrightarrow x=1\)

Vậy nghiệm duy nhất của phương trình là 1.

9 tháng 6 2019

b)\(ĐKXĐ:x\ge3\)

 \(\sqrt{4x^2-12x+9}=x-3\)

\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x-3\)

\(\Leftrightarrow2x-3=x-3\)

\(\Leftrightarrow2x=x\)

\(\Leftrightarrow x=0\)(không t/m đkxđ)

Vậy phương trình vô nghiệm

9 tháng 6 2019

ĐKXĐ: \(x\ge1\)

\(x^3-x^2-12x\sqrt{x-1}+20=0\)

\(\Leftrightarrow x^2\left(x-1\right)-12x\sqrt{x-1}+20=0\)

Đặt \(\sqrt{x-1}=t\)\(\left(t\ge0\right)\)

=> pt <=> \(x^2t^2-12xt+20=0\)

Với t=0 => 20=0 ( vô lý )

Với \(t\ne0\)ta có:

\(\Delta'=b'^2-ac=36t^2-20t^2=16t^2>0\)

=> phương trình có 2 nghiệm phân biệt

\(\orbr{\begin{cases}x_1=\frac{\sqrt{\Delta'}-b'}{a}\\x_2=\frac{-\sqrt{\Delta'}-b'}{a}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x_1=\frac{4t+6t}{t^2}\\x_2=\frac{-4t+6t}{t^2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x_1=\frac{10}{t}\\x_2=\frac{2}{t}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{10}{\sqrt{x-1}}\\x=\frac{2}{\sqrt{x-1}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x\sqrt{x-1}=10\\x\sqrt{x-1}=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2\left(x-1\right)=100\\x^2\left(x-1\right)=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^3-x^2-100=0\\x^3-x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}\left(\text{th}ỏa\text{m}ãn\right)\)

Vậy:....

P/S: Sai thì thôi nhé

9 tháng 6 2019

\(a,|x+3|=3x-1\)

+) với:\(x\ge-3\Rightarrow x+3\ge0\Rightarrow|x+3|=x+3\)

\(\Rightarrow3x-1=x+3\Rightarrow3x=x+4\Rightarrow x=2\left(\text{ thỏa mãn}\right)\)

+) với: \(x< -3\Rightarrow x+3< 0\Rightarrow|x+3|=-3-x\)

\(\Rightarrow-3-x=3x-1\Rightarrow-x=3x+2\Rightarrow4x+2=0\Rightarrow x=-\frac{1}{2}\left(\text{loại}\right)\)

Vậy: x=2

8 tháng 6 2019

ĐK:\(\hept{\begin{cases}5x^2+27x+25\ge0\\x+1\ge0\\x^2-4\ge0\end{cases}}\)(*)

\(pt\Leftrightarrow\sqrt{5x^2+27x+25}=5\sqrt{x+1}+\sqrt{x^2-4}\)

\(\Leftrightarrow5x^2+27x+25=25x+25+x^2-4+10\sqrt{\left(x+1\right)\left(x^2-4\right)}\)

\(\Leftrightarrow4x^2+2x+4=10\sqrt{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow2x^2+x+2=5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}\)

Đặt \(\hept{\begin{cases}\sqrt{x^2-x-2}=a\\\sqrt{x+2}=b\end{cases}}\)\(\Rightarrow2a^2+3b^2=5ab\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\2a=3b\end{cases}}\)..............

10 tháng 6 2019

O A B C M H F E D

a) 

Vì \(\widehat{HFB}+\widehat{HDB}=180^o\)=> Tứ giác BFHD nội tiếp

Vì \(\widehat{BFC}=\widehat{BEC}=90^o\)=> Tứ giác BFEC nội tiếp 

b) Xét tam giác BDH và tam giác BEC có: \(\widehat{BDH}=\widehat{BEC}=90^o\)\(\widehat{B_1}\)chung

=> Tam giác BDH đồng dạng tam giác BEC

=> \(\frac{BD}{BH}=\frac{BE}{BC}\)=> BD.BC=BE.BH

c) \(\widehat{BCM}=\widehat{BAM}\)( cùng chắn cung BM của đường tròn (O)) (1)

vì \(\widehat{ADC}=\widehat{CFA}=90^o\)=> Tứ giác AFDC nội tiếp

=> \(\widehat{FAD}=\widehat{FCD}\) hay \(\widehat{BAM}=\widehat{HCB}\) (2)

Từ (1) , (2) 

=> \(\widehat{BCM}=\widehat{BCH}\)=> CD là đường phân giác của tam giác HCM mà CD cũng là đường cao

=> HCM cân tại C=> D là trung điểm HM

c) Câu hỏi của Nguyễn Vy - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo link này nhé!