Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$10000=2^4.5^4$
2 số đã cho là ước của $10000$, có dạng $2^m.5^n$ với số tự nhiên $m,n$ thỏa mãn $m\leq 4; n\leq 4$
Nếu cả $m,n$ đều lớn hơn $0$ thì hiển nhiên ước đó sẽ chia hết cho 10.
Mà theo đề thì không ước nào chia hết cho 10 nên $m=0$ hoặc $n=0$. Tức là trong 2 số đã cho, một số là $2^4$ và 1 số là $5^4$
Hiệu của chúng là:
$5^4-2^4=609$
Lời giải:
a. $(x-2)^3+(x+2)^3-6x(x+2)(x-2)$
$=x^3-6x^2+12x-8+(x^3+6x^2+12x+8)-6x(x^2-4)$
$=2x^3+24x-6x^3+24x=-4x^3+48x$
b.
$(2x-y)^3+(2x+y)^3$
$=8x^3-12x^2y+6xy^2-y^3+8x^3+12x^2y+6xy^2+y^3$
$=16x^3+12xy^2$
c.
$(x-2)(x+2)-(x^2+2x+4)(x-2)$
$=(x^2-4)-(x^3-2^3)=x^2-4-x^3+8=x^2-x^3+4$
a, 38 - 815 - (65 - 815)
= 38 - 815 - 65 + 815
= 38 - (815 - 815) - 65
= 38 - 0 - 65
= - (65 - 38)
= - 27
b, (43 + 863) - (137 - 57)
= 906 - 80
= 826
189,582x3,25=616,1415
735,91-15,9720,01
39,106+1,274=40,38
nhớ tick ó