K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 3 2024

1.

\(B=\left(ab+bc+ca\right)\left(\dfrac{ab+bc+ca}{abc}\right)-abc\left(\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}\right)\)

\(=\dfrac{\left(ab+bc+ca\right)^2}{abc}-\dfrac{a^2b^2+b^2c^2+c^2a^2}{abc}\)

\(=\dfrac{a^2b^2+c^2c^2+c^2a^2+2abc\left(a+b+c\right)}{abc}-\dfrac{a^2b^2+b^2c^2+c^2a^2}{abc}\)

\(=\dfrac{2abc\left(a+b+c\right)}{abc}=2\left(a+b+c\right)\)

2.

\(x+y+z=xyz\Rightarrow\dfrac{x+y+z}{xyz}=1\)

\(\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\)

Lại có:

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\Rightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2=9\)

\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{zx}=9\)

\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.1=9\)

\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=7\)

8 tháng 3 2024

Bài thơ Đồng chí của Chính Hữu đã để lại cho tôi nhiều ấn tượng sâu sắc. Mở đầu, tác giả đã cho người đọc thấy được xuất thân cũng như quá trình hình thành tình đồng chí. Nếu như anh đến từ vùng quê “nước mặn đồng chua”, thì tôi cũng đến từ ngôi làng “đất cày lên sỏi đá”. Đây đều là những hình ảnh khắc họa nên những vùng đất khắc nghiệt, không thể trồng trọt. Những con người đến từ những vùng đất xa lạ đó, tưởng chừng như khó có thể gặp gỡ vậy mà họ “tự phương trời chẳng hẹn quen nhau”. Vì những con người ấy cùng chung một lý tưởng: “Súng bên súng, đầu sát bên đầu”. Nhưng không chỉ vậy, những người lính ấy còn chung một tấm lòng sẻ chia khó khăn gian khổ: “Đêm rét chung chăn thành đôi tri kỉ”. Nếu chưa từng trải qua cái lạnh giá của buổi đêm trong rừng sâu, chắc sẽ không thể hiểu được khó khăn của những người lính hiện tại. Nhưng không chỉ thiên nhiên khắc nghiệt, họ còn thiếu thốn về vật chất, đến tấm chăn mỏng manh phải san sẻ cho nhau. Chính vì vậy, chúng ta mới thấy được tình cảm gắn bó “tri kỷ” của những người đồng đội. Họ thấu hiểu và chia sẻ cho nhau từ những điều nhỏ nhất, giống như những người thân trong một gia đình vậy. Hai tiếng: “Đồng chí!” cất lên nghe đầy trân trọng và yêu mến. Những câu thơ tiếp theo, Chính Hữu đã cho người đọc thấy rõ những biểu hiện của tình đồng chí. Họ cùng nhau chia sẻ những trăn trở, thiếu thốn. Trong những năm tháng chiến đấu gian khổ, cuộc sống của người lính thiếu thốn đủ điều: áo rách, quần vá, chân không giày, những cơn sốt rét rừng, cái lạnh buốt của đêm trong rừng đã hành hạ họ. Nhưng trong khó khăn ấy, vẫn ấm áp tình đồng đội: “Thương nhau tay nắm bàn tay”. Hơi ấm từ đôi bàn tay, ở tấm lòng đã sưởi ấm cái giá lạnh. Cặp từ “anh” với “tôi” luôn sóng đôi cho thấy sự gắn bó, chia sẻ của những người đồng chí đồng đội. Khổ thơ cuối cùng như một cái kết đẹp cho tình đồng đội, đồng chí. Hình ảnh rừng vào buổi đêm vắng vẻ, lạnh giá và thật khắc nghiệt với “sương muối”. Nhưng người lính vẫn đứng đó, bên nhau để “chờ giặc tới” - một tâm thế chủ động đối mặt với cuộc chiến. Dù khó khăn, gian khổ luôn cận kề thì người lính vẫn không chịu khuất phục. Tình cảm đồng chí đã giúp họ vượt qua mọi khó khăn trong cuộc chiến. Câu thơ cuối cùng gợi lên một hình ảnh thật đặc sắc: “Đầu súng trăng treo”. Hai hình ảnh “súng” và “trăng” đi cùng nhau tạo nên một biểu tượng đẹp về cuộc đời của người lính. Bên cạnh hình ảnh tả thực, nó còn mang ý nghĩa tượng trưng cho tình cảm trong sáng của người chiến sĩ. Mối tình đồng chí đồng đội tồn tại bất diệt trong những năm kháng chiến gian khổ. Có thể khẳng định, Đồng chí là một trong những tác phẩm tiêu biểu của Chính Hữu

8 tháng 3 2024

\(pt:25\left(x+1\right)^4-26\left(x+1\right)^2+1=0\\ \Leftrightarrow\left[25\left(x+1\right)^4-25\left(x+1\right)^2\right]-\left[\left(x+1\right)^2-1\right]=0\\ \Leftrightarrow25\left(x+1\right)^2\left[\left(x+1\right)^2-1\right]-\left[\left(x+1\right)^2-1\right]=0\\ \Leftrightarrow\left[\left(x+1\right)^2-1\right]\left[25\left(x+1\right)^2-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2-1=0\\25\left(x+1\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=1\\\left(x+1\right)^2=\dfrac{1}{25}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=1\\x+1=-1\\x+1=\dfrac{1}{5}\\x+1=-\dfrac{1}{5}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=-\dfrac{4}{5}\\x=-\dfrac{6}{5}\end{matrix}\right.\)

Vậy tập nghiệm pt: \(S=\left\{0;-2;-\dfrac{4}{5};-\dfrac{6}{5}\right\}\)

\(25\left(x+1\right)^4-26\left(x+1\right)^2+1=0\)

=>\(25\left(x+1\right)^4-25\left(x+1\right)^2-\left(x+1\right)^2+1=0\)

=>\(25\left(x+1\right)^2\left[\left(x+1\right)^2-1\right]-\left[\left(x+1\right)^2-1\right]=0\)

=>\(\left[\left(x+1\right)^2-1\right]\left[25\left(x+1\right)^2-1\right]=0\)

=>\(\left(x+1+1\right)\left(x+1-1\right)\left(5x+5-1\right)\left(5x+5+1\right)=0\)

=>\(x\left(x+2\right)\left(5x+4\right)\left(5x+6\right)=0\)

=>\(\left[{}\begin{matrix}x=0\\x=-2\\x=-\dfrac{4}{5}\\x=-\dfrac{6}{5}\end{matrix}\right.\)

a: Xét ΔNHM có NI là phân giác

nên \(\dfrac{IM}{IH}=\dfrac{NM}{NH}\left(1\right)\)

Xét ΔNMP có NK là phân giác

nên \(\dfrac{KP}{KM}=\dfrac{NP}{NM}\left(2\right)\)

Xét ΔNHM vuông tại H và ΔNMP vuông tại M có

\(\widehat{HNM}\) chung

Do đó: ΔNHM~ΔNMP

=>\(\dfrac{NH}{NM}=\dfrac{NM}{NP}\)

=>\(\dfrac{NM}{NH}=\dfrac{NP}{NM}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{IM}{IH}=\dfrac{KP}{KM}\)

b: Xét ΔNHI vuông tại H và ΔNMK vuông tại M có

\(\widehat{HNI}=\widehat{MNK}\)(NK là phân giác của góc MNP)

Do đó: ΔNHI~ΔNMK

=>\(\widehat{NIH}=\widehat{NKM}\)

mà \(\widehat{NIH}=\widehat{MIK}\)(hai góc đối đỉnh)

nên \(\widehat{MIK}=\widehat{MIK}\)

=>ΔMIK cân tại M

c: Ta có: ΔMIK cân tại M

mà ME là đường trung tuyến

nên ME\(\perp\)IK

Xét ΔENM vuông tại E và ΔMNK vuông tại M có

\(\widehat{ENM}\) chung

Do đó: ΔENM~ΔMNK

=>\(\dfrac{NE}{NM}=\dfrac{NM}{NK}\)

=>\(NM^2=NE\cdot NK\)

Ta có: \(\dfrac{NM}{NH}=\dfrac{NP}{NM}\)

=>\(NM^2=NP\cdot NH\)

=>\(NE\cdot NK=NP\cdot NH\)

=>\(\dfrac{NE}{NP}=\dfrac{NH}{NK}\)

Xét ΔNEH và ΔNPK có

\(\dfrac{NE}{NP}=\dfrac{NH}{NK}\)

\(\widehat{ENH}\) chung

Do đó: ΔNEH~ΔNPK

=>\(\widehat{NEH}=\widehat{NPK}\)

8 tháng 3 2024

a) ta có: M là trung điểm của AB, N là trung điểm BC

\(\Rightarrow MN\) là đường trung bình của \(\Delta ABC\)

\(\Rightarrow MN\) // \(AC\) hay \(MN\) // \(AD\)

ta có: N là trung điểm BC; D là trung điểm AC

⇒ ND là đường trung bình của \(\Delta ABC\)

⇒ ND // AB hay ND // MA

xét tứ giác NMAD, có:

MN // AD (chứng minh trên)

MA // ND (chứng minh trên)

⇒ tứ giác NMAD là hình bình hành

⇒ MD = AN

b) Xét tứ giác BMDN, có:

\(ND=BM\) (Vì ND là đường trung bình của ΔABC)

Lại có: ND // AB ⇒ ND // BM

⇒ tứ giác BMDN là hình bình hành

Lại có: O là trung điểm của đường chéo MN

⇒ O cũng là trung điểm đường chéo BD

⇒ 3 điểm B; O; D thẳng hàng

8 tháng 3 2024

loading...

a: Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

=>\(\dfrac{DB}{9}=\dfrac{DC}{12}\)

=>\(\dfrac{DB}{3}=\dfrac{DC}{4}\)

mà DB+DC=BC=15cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{3}=\dfrac{DC}{4}=\dfrac{DB+DC}{3+4}=\dfrac{15}{7}\)

=>\(DB=3\cdot\dfrac{15}{7}=\dfrac{45}{7}\left(cm\right);DC=4\cdot\dfrac{15}{7}=\dfrac{60}{7}\left(cm\right)\)

b: Vì \(\dfrac{BD}{CD}=\dfrac{45}{7}:\dfrac{60}{7}=\dfrac{3}{4}\)

nên \(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{3}{4}\)

a: Sửa đề: MH//CD

Xét ΔADC có

M,H lần lượt là trung điểm của AD,AC

=>MH là đường trung bình của ΔADC

=>MH//DC và \(MH=\dfrac{DC}{2}\)

Xét ΔCABcó 

N,H lần lượt là trung điểm của CB,CA

=>NH là đường trung bình của ΔCAB

=>NH//AB và \(NH=\dfrac{AB}{2}\)

b: MH+HN<=MN

=>\(\dfrac{1}{2}\left(AB+CD\right)< =MN\)

=>\(MN>=\dfrac{1}{2}\left(AB+CD\right)\)

a: Xét ΔABC có EI//BC

nên \(\dfrac{AE}{AB}=\dfrac{AI}{AC}\left(1\right)\)

Xét ΔADC có FI//DC

nên \(\dfrac{AI}{AC}=\dfrac{AF}{AD}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AE}{AB}=\dfrac{AF}{AD}\)

Xét ΔABD có \(\dfrac{AE}{AB}=\dfrac{AF}{AD}\)

nên EF//BD

b: Xét ΔCBA có GI//AB

nên \(\dfrac{CG}{BG}=\dfrac{CI}{IA}\left(3\right)\)

Xét ΔCAD có IH//AD

nên \(\dfrac{CI}{IA}=\dfrac{CH}{HD}\left(4\right)\)

Từ (3),(4) suy ra \(\dfrac{CG}{BG}=\dfrac{CH}{HD}\)

=>\(CG\cdot HD=BG\cdot CH\)