Bài 4: Cho DABC cân tại A. Kẻ AM ^ BC tại M.
a) Chứng minh DABM = DACM và suy ra MB = MC
b) Biết AB = 20 cm; BC = 24 cm. Tính độ dài các đoạn thẳng MB và AM.
c) Kẻ MH ^ AB tại H và MK ^ AC tại K. Chứng minh DAHK cân tại A. Tính MH
dấu ^ là dấu vuông góc
mình cần mỗi phần c thôi
c) Xét \(\Delta\)AHM và \(\Delta\)AKM có:
^AHM = ^AKM = 90 độ
AM chung
^MAH = ^MAK ( \(\Delta\)ABM = \(\Delta\)CKM ; hai góc tương ứng bằng nhau)
=> \(\Delta\)AHM = \(\Delta\)AKM
=> AH = AK
=> \(\Delta\)AHK cân tại A
+) Xét S(AMB ) = \(\frac{1}{2}\)AM.MB = \(\frac{1}{2}\)MH.AB
=> AM.MB = MH.AB
=> 16.12=MH.20
=> MH = 9,6 cm.