Cho đường tròn tâm O, đường kính AB=2R, kẻ tiếp tuyến Ax của đường tròn. Từ 1 điểm M trên tia Ax, kẻ tiếp tuyến MC với tiếp điểm C thuộc (O). Qua O kẻ Oy vuông góc AB, Oy cắt BC tại N.
1) Chứng minh OMNB là hình bình hành
2) AN cắt OM tại K, MC cắt ON tại I, MN cắt OC tại E. Chứng minh tam giác MIO cân và 3 điểm K, I và E thẳng hàng
3) Gọi H là trực tâm của tam giác MAC. Chứng minh H thuộc đường tròn cố định khi M chuyển động trên Ax
4) Tìm vị trí điểm M để K thuộc đường tròn (O)