Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình của em đâu, phần tô màu là phần nào thì mới chứng minh chính xác được em nhé
\(\left(x-1\right)^3-\left(x-3\right)\left(x^2+3x+9\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-\left(x^3-27\right)-3x+3x^2\)
\(=x^3-3x^2+3x-1-x^3+27-3x+3x^2\)
\(=26\Rightarrow dpcm\)
\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)-3x\left(1-x\right)\)
\(=x^3-9x^2+27x-27-\left(x^3-27\right)-3x+3x^2\)
\(=x^3-9x^2+27x-27-x^3+27-3x+3x^2\)
\(=24x-6x^2\)
Hình như đề có chỗ sai sót ở đâu đó bạn .
vãi ò ông ngx thành đạt chép sai đầu bài r (x-1)3 cchchuchưchứchứ kkoko pphphaphaiphảiphải (x-3)33
\(A=x^2-4x+20=x^2-4x+4+16=\left(x-2\right)^2+16\)
Do \(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+16\ge16\)
\(\Rightarrow Min\left(A\right)=16\)
\(B=x^2-3x+7=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}+7=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\)
Do \(\left(x-\dfrac{3}{2}\right)^2\ge0\)
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
\(\Rightarrow Min\left(B\right)=\dfrac{19}{4}\)
\(C=-x^2-10x+70=-\left(x^2+10x+25\right)+25+70=-\left(x-5\right)^2+95\)
Do \(-\left(x-5\right)^2\le0\)
\(\Rightarrow-\left(x-5\right)^2+95\le95\)
\(\Rightarrow Max\left(C\right)=95\)
\(D=-4x^2+12x+1=-\left(4x^2-12x+9\right)+9+1=-\left(2x-3\right)^2+10\)
Do \(-\left(2x-3\right)^2\le0\)
\(\Rightarrow-\left(2x-3\right)^2+10\le10\)
\(\Rightarrow Max\left(D\right)=10\)
a, F(\(x\)) = a\(x^2\) + b\(x\) + c (a; b; c \(\in\) Q và a \(\ne\) 0)
Vì F(\(x\)) có nghiệm là \(\sqrt{2}\) ta có F(\(\sqrt{2}\)) = 0
⇔ a.(\(\sqrt{2}\))2 + b.(\(\sqrt{2}\)) + c = 0
2a + \(\sqrt{2}\)b + c = 0 ⇒ c = - (2a + \(\sqrt{2}\)b) (1)
a\(x^2\) + b\(x\) + c = 0
a(\(x^2\) + 2. \(\dfrac{b}{2a}\)\(x\) + \(\dfrac{b^2}{4a^2}\)) - \(\dfrac{b^2-4ac}{4a}\) = 0
a.(\(x\) + \(\dfrac{b}{2a}\))2 = \(\dfrac{b^2-4ac}{4a}\)
(\(x\) + \(\dfrac{b}{2a}\) )2 = \(\dfrac{b^2-4ac}{4a^2}\)
\(\left[{}\begin{matrix}x=\dfrac{-b+\sqrt{b^2-4ac}}{2a}\\x=\dfrac{-b-\sqrt{b^2-4ac}}{2a}\end{matrix}\right.\)
Thay (1) vào \(x\) = \(\dfrac{-b-\sqrt{b^2-4ac}}{2a}\) ta có
\(x\) = \(\dfrac{-b-\sqrt{b^2-4a\left(2a+\sqrt{2}b\right)}}{2a}\)
a) \(f\left(x\right)=ax^2+bx+c=0\)
\(\Rightarrow f\left(x_1=\sqrt[]{2}\right)=2a+b\sqrt[]{2}+c=0\left(1\right)\)
\(S=x_1+x_2=-\dfrac{b}{a}\Rightarrow x_2=-\dfrac{b}{a}-x_1=-\dfrac{b}{a}-\sqrt[]{2}\)
\(P=x_1.x_2=\dfrac{c}{a}\Rightarrow x_2=\dfrac{c}{a.x_1}=\dfrac{c}{a.\sqrt[]{2}}\)
Vậy nghiệm còn lại là \(-\dfrac{b}{a}-\sqrt[]{2}\) hay \(\dfrac{c}{a.\sqrt[]{2}}\left(a,b,c\in Q;a\ne0\right)\)
b) \(P\left(x\right)=x^2-px+q\)
\(S=x_1+x_2=p;P=x_1.x_2=q\)
Để P(x) có nghiệm \(x_1;x_2\) đều là số nguyên
\(\Rightarrow S=p;P=q\) đều là số nguyên
mà \(p,q\) là số nguyên tố
\(\Rightarrow p;q⋮1\)
\(\Rightarrow\left(p;q\right)\in\left\{-1;1\right\}\Rightarrow p=\pm1;q=\pm1\)
Ta thay \(p=\pm1;q=\pm1\) vào \(P\left(x\right)=x^2-px+p=0\) ta được \(\Delta=5;\Delta=-4< 0\) \(\Rightarrow p,q\) không thỏa nghiệm đa thức nguyên
\(\Rightarrow\left(p;q\right)\in\varnothing\)